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Abstract—Hot-patches, easier to develop and faster to deploy
than permanent patches, are used to timely (and temporarily)
block exploits of newly discovered vulnerabilities while perma-
nent patches are being developed and tested. Researchers recently
proposed to apply hot-patching techniques to system programs
on Android as a quick mitigation against critical vulnerabilities.
However, existing hot-patching techniques, though widely used
in conventional computers, are rarely adopted by Android OS
or device vendors in reality. Our study uncovers a major hurdle
that prevents existing hot-patching methods from being effective
on mobile devices: after being developed, hot-patches for mobile
devices have to go through lengthy compatibility tests that
Android device partners impose on all system code updates. This
testing and release process can take months, and therefore, erase
the key benefit of hot-patches (i.e., quickly deployable).

We propose InstaGuard, a new approach to hot-patch for
mobile devices that allows for instant deployment of patches (i.e.,
“carrier-passthrough”) and fast patch development for device
vendors. Unlike existing hot-patching techniques, InstaGuard
avoids injecting new code to programs being patched. Instead, it
enforces instantly updatable rules that contain no code (i.e., no
carrier test is needed) to block exploits of unpatched vulnerabili-
ties in a timely fashion. When designing InstaGuard, we overcame
two major challenges that previous hot-patching methods did
not face. First, since no code addition is allowed, InstaGuard
needs a rule language that is expressive enough to mitigate
various kinds of vulnerabilities and efficient to be enforced on
mobile devices. Second, rule generation cannot require special
skills or much efforts from human users. We designed a new
language for hot-patches and an enforcement mechanism based
on the basic debugging primitives supported by ARM CPUs. We
also built RuleMaker, a tool for automatically generating rules
for InstaGuard based on high-level, easy-to-write vulnerability
descriptions. We have implemented InstaGuard on Google Nexus
5X phones. To demonstrate the coverage of InstaGuard, we show
that InstaGuard can handle all critical CVEs from Android
Security Bulletins reported in 2016. We also conduct unit tests
using critical vulnerabilities from 4 different categories. On
average, InstaGuard increases program memory footprint by
1.69% and slows down program execution by 2.70%, which are
unnoticeable to device users in practice.

I. INTRODUCTION

A daunting challenge for securing the Android ecosystem is
device vendors’ inability of instantly releasing system security
updates to users’ devices. For example, the notorious Quad-
Rooter vulnerabilities [12], affecting more than 900 million
Android devices equipped with Qualcomm chipsets, were ini-
tially reported to Google in April 2016. However, it was after
5-7 months that large device vendors such as Samsung and
HTC started pushing out system updates that finally patched
the vulnerabilities. Even today, more than a year since the
disclosure of the vulnerabilities, a large number of devices
from other vendors have not been patched or will never receive
a patch.

To remedy the prolonged security update process that
plagues Android OS, researchers proposed to apply vulnera-
bility hot-patching techniques to system programs on Android
that cannot be updated till the next OS upgrade [32], [28],
[37], [22]. Hot-patching is a class of fast vulnerability mitiga-
tion techniques. It dynamically injects code into a vulnerable
program as a temporary fix that either disables or replaces
the vulnerable code, preventing the vulnerability from being
exploited while a permanent patch is being developed and
tested. However, despite the wide adoption in desktops and
servers [6], [1], [13], hot-patch solutions are not well received
on Android platforms.

Teaming up with a major mobile device vendor, we investi-
gated the adoption resistance facing hot-patching mechanisms
in the Android ecosystem. We found that the lack of adoption
is due to the fact that existing hot-patching techniques, orig-
inally designed for conventional computers, are unaware of
an important constraint posed by OEMs and mobile network
carriers on system code updates: before deployment, all system
code updates for mobile devices must go through lengthy
compatibility tests performed by each party.

Despite efforts made by both vendors and carriers to reduce
the delay in update release [10], the current average delay still
lasts 3-4 months. Being system code updates, hot-patches have
to undergo this lengthy testing process and cannot be deployed
on consumer devices without a significant delay. Therefore,
device and OS vendors see little incentive to adopt existing hot-
patching systems, knowing that hot-patches for mobile devices
would never be instantly deployable as expected.

To bring the benefits of hot-patches to Android devices
(i.e., timely protection since vulnerability disclosure) without
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breaking carriers’ requirements, we propose InstaGuard, a
new approach to hot-patching that allows for instant deploy-
ment of patches (i.e., “carrier-passthrough”) and fast patch
development. Although hot-patching has been studied before,
no existing method was designed under the requirement that
InstaGuard needs to meet, namely enabling hot-patches that
are safe to pass-through carriers and at the same time block
exploits of various kinds of vulnerabilities.

Unlike existing hot-patching techniques, InstaGuard avoids
injecting new code to vulnerable programs or their memory
space. Instead, it enforces instantly updatable rules that contain
no code to block exploits of unpatched vulnerabilities in a
timely fashion. Our design choice of rule-driven hot-patches
was inspired by our observation that carriers allow non-code
updates (e.g., new rules) to pass through without regression
tests, as evidenced by SEAndroid policy updates, which ven-
dors can quickly push to consumer devices over-the-air without
much involvement of carriers [7].

To design an effective rule-driven hot-patching system, we
need to overcome two unique challenges that existing code-
injection-based hot-patching techniques did not face. First, an
expressive language is needed for composing the rules, which
should be capable of instructing the runtime enforcement
engine to efficiently block a variety of exploits. At the same
time, this language should not be as unrestricted as code for
security reasons. Second, the generation of such rules needs to
be automated to an extent where human users with high-level
knowledge about a newly reported vulnerability can easily
produce a hot-patch rule for it.

We propose a simple language for writing hot-patch rules,
called GuardRule. This language is based on the basic de-
bugging primitives supported by ARM CPUs, namely Break-
Point, WatchPoint, and Assertion. A GuardRule contains
a sequence of statements, each statement representing a use of
a debugging primitive confined by necessary conditions. The
idea of composing GuardRule using the debugging primitives
allows for: (i) constructing hot-patching logic for a wide
range of vulnerability (i.e., highly expressive); (ii) instantly
releasing new GuardRule to consumer devices (i.e., carrier-
passthrough); (iii) efficient enforcement of GuardRule thanks
to the hardware-backed debugging support. Additionally, we
design GuardRule to be restrictive: it restricts, rather than
adding new behaviors to, the execution of a vulnerable pro-
gram, ensuring that a flawed rule cannot cause new security
problems or undo the protection provided by other rules. This
property makes GuardRule updates even safer in the eyes of
stake holders than, for instance, SEAndroid policy updates,
which has passed carriers’ bar for granting pass-through.

Considering that writing low-level rules can be difficult
and error-prone, we built a tool, called RuleMaker, that
helps device vendors and security analysts quickly and easily
produce GuardRule. RuleMaker takes as input GuardSpec,
written in a high-level language that we designed for describing
vulnerabilities, and outputs GuardRule. Writing GuardSpec
does not require any knowledge of InstaGuard’s design or its
mechanics for blocking exploitations. Our design of Guard-
Spec was informed by our extensive study of real-world
vulnerability reports, where we developed a categorization for
Android system vulnerabilities, consisting of 7 buckets. For

each vulnerability bucket, GuardSpec supports a simple syntax
to describe vulnerabilities in that bucket.

In the event of a newly disclosed vulnerability in Android
system, device vendors can quickly write a GuardSpec that
describes the vulnerability and then use RuleMaker to syn-
thesize a GuardRule, which can be instantly released over-
the-air and deployed on consumer devices. Vendors can then
start developing the permanent patch and work with carriers
to test it. Even if this process can take months, vulnera-
ble devices are protected by InstaGuard before the perma-
nent patch is installed. On the device side, upon receiving
a verified GuardRule, InstaGuard sets up the breakpoints,
watchpoints, and assertions accordingly and starts enforcing
the hot-patching logic. InstaGuard mitigates various types of
vulnerabilities, including memory corruptions, race condition,
integer overflows, and logic bugs. When a GuardRule is
triggered (i.e., an exploit attempt is caught), InstaGuard either
terminates the affected process or logs the event without
interrupting the execution, depending on the action defined in
the GuardRule. We note that advanced execution recovery or
fallback techniques can be used to expand the actions that
InstaGuard may take upon a caught exploitation. However,
these techniques warrant separate research and are out of the
scope for this paper.

Similar to previous hot-patching techniques, InstaGuard is
not meant as a replacement for permanent security updates. It
aims to provide timely yet temporary mitigation of unpatched
vulnerabilities. Filling a void in today’s Android security
response solutions, InstaGuard can help significantly narrow
the vulnerability exploitation window that used to be several
months, enabling instant protection of freshly discovered vul-
nerabilities on Android devices. InstaGuard has the following
unique advantages, which distinguishes it from existing hot-
patching techniques.

• Rule-driven. Hot-patches are released and deployed in the
form of enforceable rules, rather than executable code
(i.e., no code is carried in the hot-patches; no code is
injected to vulnerable programs or their memory space).
Moreover, the rules are restrictive by design, which en-
sures that InstaGuard can not be abused as traditional hot-
patching mechanisms may. Our rule-driven design allows
the patches (or rules) to pass through carriers without
delayed, thus achieving instant patch deployment.

• Vulnerability-generic. Its rule language is expressive
enough to describe 7 different types of critical vulner-
abilities.

• Easy-to-use. Its users only need to write high-level vul-
nerability descriptions, which can be easily extracted
from vulnerability reports, as opposed to exploit detection
logics; such descriptions are then automatically compiled
into low-level rules.

• Efficient. It uses debugging features for rule enforcement,
which incurs very low runtime overhead. Although the
general idea of using debugging features was applied to
exploit mitigation before [26], InstaGuard advances the
idea by hiding the low-level debugging primitives away
from patch developers and enabling easy development of
hot-patching rules (as opposed to complex code patches
that directly deal with debugging primitives).

We evaluated InstaGuard against 30 critical CVEs from the
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Android Security Bulletins reported in 2016 [9]. InstaGuard is
able to fully mitigate all of them. We also invited security
analysts from the collaborating vendor to evaluate InstaGuard
and RuleMaker using different kinds of real vulnerabilities.
The evaluation results show that on average, each GuardSpec
contains only 7-8 lines and takes only a few minutes to write.
When enforcing these rules, InstaGuard incurs a mild 1.69%
overhead on the memory footprint and 2.70% slowdown during
unit tests.

In summary, we make the following contributions:

• We design and implement InstaGuard, the first rule-driven
hot-patching system for Android that enables carrier-
passthrough patches.

• We design the GuardSpec language that allows for generic
description of a wide range of vulnerabilities.

• We build RuleMaker, which automatically compiles high-
level, easy-to-write vulnerability descriptions (Guard-
Spec) into low-level rules (GuardRule) consumed by
InstaGuard.

• We examined the coverage of InstaGuard against 30
vulnerabilities released in 2016 and performed unit tests
using critical vulnerabilities of 4 different types.

The rest of the paper is organized as follows: In § II we
motivate our work by showing the demand for a hot-patching
system for Android capable of instant deployment of patches.
In § III we present the design details of InstaGuard, GuardRule
and RuleMaker. We then discuss the technical challenges we
addressed during the implementation of these components in
§ IV. We report our analysis and empirical evaluation results
in § V and in § VI we contrast InstaGuard with the related
works. We discuss the potential improvement in § VII and
finally, the whole paper is concluded in § VIII.

II. BACKGROUND

A. Delayed Android System Patches

Android is often considered less secure than iOS, not be-
cause Android is more vulnerable, but due to the much longer
system update cycle of Android devices. In fact, vulnerabilities
discovered in iOS are not fewer than those discovered in
Android [37]. Unlike iOS devices, which is solely developed
by Apple, the Android ecosystem and device market are highly
fragmented [8]. Developing and deploying system software
updates for Android requires cooperations among multiple
parties, such as OS vendors, device vendors, carriers, etc. The
fragmentation and the complex chain of stakeholders cause
months, or even years, of delays in security patch and update
deployment, which often leave a large number of vulnerable
devices open to attacks, despite that many vulnerabilities have
already been fixed by upstream vendors.

We conducted an empirical survey on the life cycles of
vulnerabilities in Android system programs installed on a
mainstream product line of Samsung. As shown in Table I,
the average time needed for completely resolving these high-
severity security vulnerabilities (i.e., from the initial disclosure
to the deployment of permanent patch) is 7.6 months, which
are dangerously long. We found that third-party libraries, such
as OpenSSL, tend to have even longer patch delays than
first-party programs. More alarmingly, there are two critical

TABLE I: Severe vulnerability life cycles and patch delays. OEMs
normally receive upstream patches from google 1 month earlier before
the bulletin goes public.

 
 CVE# Bug 

reported 
date 

3rd-party 
libs 
website 
release 
patch 

Google 
releases 
patch to 
OEM 

OEM 
releases 
patch 

Carrier 
releases 
OTA 
update 

Delayed 
months 

openssl 2016-
2108 

4/18/2015 6/11/2015 6/2016 7/2016 Roughly 
one 
month. 
varying 
across 
carriers. 

16 

libstagefright 2015-
3824 

5/4/2015 N/A 7/9/2015 10/2015 6 

openssl 2016-
2107 

4/18/2015 6/11/2015 6/2016 7/2016 16 

mediaserver 2016-
2428 

1/22/2016 N/A 5/2016 6/2016 6 

libstagefright 2015-
3824 

5/4/2015 N/A 8/2015 10/2015 6 

libstagefright 2015-
1539 

4/08/2015 N/A 8/2015 no patch 
planned 

¥ 

sonivox 2015-
3836 

5/14/2015 N/A 8/2015 no patch 
planned 

¥ 

mediaserver 2016-
0835 

12/6/2015 N/A 3/2016 4/2016 6 

mediaserver 2016-
2416 

2/5/2016 N/A 3/2016 4/2016 3 

libstagefright 2015-
3823 

5/20/2015 N/A 9/2015 10/2015 6 

aac 2016-
2428 

1/22/2016 N/A 5/2016 6/2016 6 

libmedia 2016-
2419 

12/24/2015 N/A 3/2016 4/2016 5 

Avg. delay   1.6 3.4 1.3 1 7.6 
 

* This is the best case, since we don’t know whether one specific SMR will actually be pushed out.  
 
 
 
 
 

vulnerabilities shown in the table (CVE-2015-1539 and CVE-
2015-3836) that still remain unpatched to date. In fact, it is not
uncommon to see vendors or carriers decide not to develop or
deploy a vulnerability patch because of high cost or out-of-
support devices.

The key observation from our survey is that security
patches for Android system programs and libraries are often
delayed by months, mostly due to the extended time needed
for developing, testing, and deploying permanent patches. To
timely protect vulnerable Android system programs while their
permanent patches are in the making, a hot-patching technique
is needed that allows device vendors to easily and quickly gen-
erate hot-patches and instantly deploy them through carriers to
user devices.

B. Hot-patching and Its Adoption Obstacle on Android

Despite the obvious need for hot-patching on Android and
the availability of existing techniques [1], [13], [6], mobile de-
vice vendors rarely introduce hot-patching to Android. We col-
laborated with a major vendor to investigate this problem. We
concluded that the existing hot-patching techniques, originally
designed for computer programs, do not consider a unique
constraint posed by mobile carriers and other stakeholders, and
consequently, cannot be deployed instantly.

As explained in [5], any code patch for system binaries on
Android devices must be approved by all parties in the opera-
tion chain, including carriers, before the patch can be released
and deployed. This requirement allows newly added system
code to be fully tested by all parties for potential compatibility
and security issues, despite that these tests can take weeks or
months. However, existing hot-patching techniques are at odds
with this requirement. To disable or replace vulnerable code,
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these techniques need to inject new code to either program
binaries or program memory spaces. Therefore, if applied to
Android system programs, these hot-patches (i.e., new code
to be injected to vulnerable programs) must go through the
lengthy tests, and therefore, cannot be instantly deployed,
which makes it pointless for vendors to adopt existing hot-
patching techniques.

C. Carrier-passthrough Updates

During our investigation, we came across a type of updates
that carriers and stakeholders waive their tests and allow to
pass through without interruption. We refer to these updates
as carrier-passthrough updates. We found carriers created this
exception to let time-sensitive, non-code updates be pushed to
user devices over-the-air without delays, under the good faith
that non-code updates are very unlikely to cause compatibility
or safety issues. One example is the SEAndroid policy updates.

This finding inspired us to design a new hot-patching
technique that can leverage the carrier-passthrough update
channel and enable instantly deployable hot-patches for An-
droid devices. Next, we identify the requirements for designing
such a technique.

D. Design Requirements for Android Hot-patching System

Informed by our empirical study, we set out to design an
effective and practical hot-patching system for Android. This
system should meet the following requirements:

R1 - Non-code patches Hot-patches should not carry code
in any form. Further, the patching should not involve
injecting new code to vulnerable program binaries or
program memory. This requirement ensures that hot-
patches do not contain code or introduce new code to
to-be-patched programs, and therefore, do not warrant
carrier-imposed tests meant for code patches (SEAndroid
policy updates already set a precedent for the test waiver).

R2 - Restrictive patching We call a hot-patching system “re-
strictive” when its patches can only restrict program
execution (e.g., forbidding certain execution paths), rather
than amplifying it (e.g., add new execution paths or
permissions), which may lead to abuse of the hot-patching
system itself as previously reported [15], [17]. When
hot-patches meet this requirement, carriers and other
stackholders can more confidently grant pass-through on
hot-patches (SEAndroid do not meet this requirement
because it supports permissive rules).

R3 - Wide vulnerability coverage The hot-patching system
should be able to block various kinds of vulnerabilities,
including the memory corruption bugs, race condition,
logic bugs, etc.

R4 - Ease of use The system should allow human developers
and analysts to easily and quickly compose hot-patches
without requiring more knowledge than the high-level
understanding of the vulnerability being patched.

A hot-patching system for Android needs to meet all above
requirements to be effective, practical, and safe, which means it
supports instantly deployable patches, mitigates various kinds
of vulnerabilities, and allows fast development of patches.
Next, we discuss our design of InstaGuard and show how it
meets all the requirements.

Target

BP/WP(s)

Assertions

System	Daemons

InstaGuardpush new 
GuardRule

Vuln Type

Code loc

Involved data

generate
GuardRule

GuardRule
Distribution 
via OTA Client Side (a mobile device)

receive
GuardRule

GuardSpec

GuardRule

RuleMaker overview InstaGuard protection
Vendors Side

Bug 
reports

Installed 
GuardRule

live install
GuardRule

1 2 3

4

5

compose 
GuardSpec

Fig. 1: Vendors generate GuardRule for their vulnerable system
components (left); InstaGuard mitigates reported vulnerability based
on GuardRule (right).

III. SYSTEM DESIGN

A. Overview

Our goal of designing InstaGuard is to provide the first
instantly deployable defense against unpatchable or to-be-
patched system vulnerabilities in Android. InstaGuard blocks
exploitations of vulnerabilities by enforcing GuardRule (a new
type of hot-patch), which vendors generate and distribute as
soon as they discover new vulnerabilities whose full patches
cannot be developed or deployed immediately. GuardRule is
designed to meet R1–R2 (as shown in § III-F), and therefore,
can pass-through carriers and be deployed to user devices over-
the-air (OTA). To ease and, to a large extent, automate the rule
generation process, we designed GuardSpec and RuleMaker.
GuardSpec is a high-level, short vulnerability description writ-
ten in a simple language we designed. RuleMaker is a tool that
synthesizes GuardRule from GuardSpec.

Figure 1 shows the system overview. Upon receiving
bug reports or vulnerability disclosures, vendors compose
GuardSpec (Step 1 ) and then use RuleMaker to synthesize
GuardRule (Step 2 ), which is then instantly distributed to
user devices via OTA (Step 3 ). After receiving GuardRule,
InstaGuard on a user device installs the rule after necessary
integrity checks (Step 4 ) and starts enforcing the rule (Step
5 ), closing the exploitation window within hours, if not

sooner, since the initial vulnerability report.

InstaGuard enforcement mechanism builds upon three basic
debugging primitives: breakpoint, watchpoint and assertion.
Breakpoint (BP) allows InstaGuard to intercept a program
execution reaching a code location where a vulnerability can
be triggered immediately. Watchpoint (WP), on the other hand,
allows InstaGuard to efficiently capture memory data accesses
potentially causing vulnerability exploitations. Assertion (AS),
when used in combination with the first two primitives, allows
InstaGuard to perform necessary checks to determine if vulner-
ability triggering conditions are met. A GuardRule uses these
primitives, in a certain sequence with concrete parameters (e.g.,
BP/WP addresses and AS expressions), to detect and block the
exploitations of a vulnerability. We will show in § III-D that
these basic primitives and the expressive syntax of GuardRule
allow InstaGuard to cover a wide range of critical vulnerability
types, including logic bugs, integer overflow, out-of-bound
access, format string abuse, race condition, and user-after-free
bugs.
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1 ssize_t utf16_to_utf8_length(const char16_t *src,
size_t src_len),!

2 {
3 ...//sanity checks
4 size_t ret = 0;
5 const char16_t* const end = src+src_len;
6 while (src < end) {
7 if ((*src & 0xFC00) == 0xD800
8 && (src + 1) < end
9 && (*++src & 0xFC00) == 0xDC00) {

10 // surrogate pairs are always 4 bytes.
11 ret += 4;
12 src++;
13 } else {
14 ret += utf32_codepoint_utf8_length

((char32_t) *src++);,!
15 }
16 }
17 return ret;
18 }

1

Fig. 2: system/core/libutils/Unicode.cpp – CVE-2016-
0836, the logic bug on Line 9 can cause buffer overflow.

1 <rules>
2 <rule cve="CVE-2016-3861">
3 <module_name>libutils.so</module_name>
4 <decision>BLOCK</decision>
5 <binary_path>/system/bin/mediaserver</binary_path>
6 <break_points>
7 <break_point first=true, id=0>
8 <!--binary address corresponding to line 9

in Listing 1-->
9 <address>0x08055000</address>

10 <!--next action: activating assertion
primitive with id 0-->

11 <action> VERIFY AS#0</action>
12 </break_point>
13 </break_points>
14 <assertions>
15 <!--if assertion evaluate to true InstaGuard

BLOCK the execution as node ?decision?
speicify-->

16 <assertion id=0, action=decision>
17 <data_constraints>
18 <data_constraint>
19 <ops>NE</ops>
20 <left_exp>
21 <!--retrieval rule for *src-->
22 <node id=0>reg_2_32</node>
23 <node id=1>const_0xFC00</node>
24 <node id=2>bitwise_and</node>
25 </left_exp>
26 <right_exp>
27 <node>const_0xDC00</node>
28 </right_exp>
29 </data_constraint>
30 </data_constraints>
31 </assertion>
32 </assertions>
33 </rule>
34 </rules>

Fig. 3: Simplified GuardRule example. It stops program execution at
the converted binary address of line 9 in the source code, and use
assertion rules to check if *src & 0xFC00 == 0xDC00 as specified
in data_constraint nodes.

To better demonstrate how our system works, we now
describe in detail the steps it takes to mitigate a real-world
vulnerability (CVE-2016-3861). This is a logic bug in libu-
tils.so, which is used by several critical system daemons on
Android, including mediaserver. As shown in Figure 2, when
the expression on Line 9 evaluates to false, the string pointer
src is mistakenly advanced twice (on Line 9 and Line 14),
causing the expected length of the string to be shorter than the
actual string length, and later, leading to a buffer overrun.

InstaGuard can stop any exploitation of this logic bug
using the GuardRule shown in Figure 3. The rule instructs
InstaGuard to set a BP at the binary location corresponding to
Line 9 in Figure 2 and, when the BP is reached, use an AS to
check the vulnerability triggering condition, namely *src &

1 [common]
2 ID = CVE-2016-3861
3 binary_path = /system/bin/mediaserver
4 module_name =libutils.so
5 decision = BLOCK
6
7 [logic bug]
8 vul_location = system/core/libutils/Unicode.cpp |

utf16_to_utf8_length | 411,!
9 lexp = *src & 0xFC00

10 rexp = 0xDC00
11 relation_op = NE

1

Fig. 4: Image-independent and human-friendly GuardSpec file com-
posed by security analytics. Line 8 reflects the real source code
location.

1 [common]
2 ID = CVE-2016-3871
3 binary_path = /system/bin/mediaserver
4 module_name =libstagefright_soft_avcenc.so
5 decision = BLOCK
6
7 [buffer overflow]
8 buf_name = outHeader->pBuffer
9 buf_size = outHeader->nAllocLen

10 vul_location =
libstagefright/codecs/mp3dec/SoftMP3.cpp
|SoftMP3::internalGetParameter | 303

,!
,!

1

Fig. 5: The vulnerability description style GuardSpec for CVE-2016-
3871 (buffer overflow)

0xFC00 == 0xDC00. The use of the BP and the AS is defined
on Line 7-12 and Line 16-31 in Figure 3, where the BP is
chained to the AS as a predecessor via the “action” defined
on Line 11. If the AS is true (i.e., the bug is about to be
triggered), the action for the AS is performed, which in this
case simply blocks the program execution, as specified on Line
16 and 4 in Figure 3. While we defer the complete discussion
of GuardRule syntax and other covered vulnerability types to
§ III-D, we note that the expressiveness of GuardRule and the
wide vulnerability coverage of InstaGuard are enabled by the
carefully designed GuardRule syntax, which allows, among
other things, primitive chaining via actions and primitive
placement at sub-function level.

We recognize that manually composing a GuardRule can
be slow and difficult due to the required knowledge about
InstaGuard internals and binary-level characteristics of vul-
nerabilities. Therefore, we do not expect human to write
GuardRule directly. Instead, we introduce a simple lan-
guage called GuardSpec for describing vulnerabilities in a
programmer-friendly way. We build a tool called RuleMaker to
automatically synthesize GuardRule using GuardSpec as input.
To write a GuardSpec, one needs no more than some high-level
knowledge about a given vulnerability, which can be easily
extracted from typical bug or vulnerability reports. Figure 4
shows the GuardSpec that corresponds to the GuardRule in
Figure 3—the former is much simpler and readable than the
latter. As another example, Figure 5 shows the GuardSpec
for mitigating CVE-2016-3871, which is a buffer overflow
vulnerability. In this GuardSpec, the human analyst only need
to describe the overrun buffer and the culprit code location,
RuleMaker will take over the work and synthesize a fully
functional GuardRule, which may be directly deployed to end
user devices. RuleMaker hides the details about InstaGuard
primitives and mechanisms away from users of the system. It
allows security analysts and vendors to automatically generate
GuardRule by providing GuardSpec, which they can easily
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write while investigating reported vulnerabilities. The Guard-
Spec format is discussed in § III-D.

In the rest of the section, we first discuss the threat model
and then the design details of InstaGuard, GuardRule and
RuleMaker. We finally examine our proposed design against
the requirements (R1-R4).

B. Usage Scenario and Threat Model

InstaGuard’s intended users include Android OS and device
vendors. InstaGuard aims to significantly reduce the Android
vulnerability exposure window from months down to days, if
not sooner. It allows vendors to quickly develop and instantly
deploy GuardRule for stopping exploitations of critical vulner-
abilities in Android framework programs, whose full patches
usually are not available until the OS or firmware is updated
months after vulnerability discovery.

Under this usage scenario, we adopt a realistic threat model
that is common among vulnerability hot-patch solutions. We
trust the OS kernel and rely on it as the TCB for InstaGuard.
However, we assume that system daemons and libraries may
contain critical vulnerabilities (e.g., stagefright). We expect
skilled attackers to attempt exploitations of various kinds. The
goal of InstaGuard is to prevent exploitations of vulnerable
system components in Android. We note that, as a rule-
driven exploit mitigation system, InstaGuard cannot react to
exploitations of unknown vulnerabilities for which no rule is
defined. InstaGuard serves as the first line of defense against
exploitations. It is ineffective on a program that has already
been compromised or become malicious.

C. InstaGuard: Rule-driven Vulnerability Mitigation

1) InstaGuard Components and Workflow: The InstaGuard
system consists of both the user-space and kernel-space com-
ponents. The user-space components receive GuardRule up-
dates and collaborate with the kernel-space component to
dynamically load and enforce updated rules without rebooting
the device. Figure 6 shows the the major components of
InstaGuard and their workflow.

• InstaGuard Daemon (iDaemon) is a user-space daemon
process which instructs iMonitor (discussed shortly) to
initiate rule installation or removal upon rule update and
process restart.

• InstaGuard Runtime Monitor (iMonitor) is a library
loaded in each monitored process (i.e., a process being
protected by InstaGuard). It is in charge of (i) Parsing
GuardRule; (ii) Requesting iDriver to register BP and
WP as needed by GuardRule. (iii) Verifying assertion
primitives.

• InstaGuard Kernel Driver (iDriver) is the kernel-
space component responsible for (i) handling BP and
WP registration requests from iMonitor; (ii) coordinating
monitored processes to timeshare the hardware debug
registers; (iii) notifying iMonitor upon hardware BP/WP
exceptions; (iv) silently dismiss any exceptions/violations
caused by iMonitor due to a buggy GuardRule, if any.

We split the system into three components for better
security and efficiency. The kernel-level iDriver is kept min-
imal (thus a small TCB) and used for performing privileged
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Fig. 6: InstaGuard components and workflow. While components
are marked with rounded rectangle and the arrows indicate the
information flow direction.

operations (e.g., configuring the debug hardware). The user-
space iMonitor performs the program- and context-specific op-
erations, such as assertion evaluation and retrieval of memory
content. Since iMonitor operates directly in the same context
of the monitored program, there is no semantic gap problem
and is also more efficient when trying to evaluate the process
state. iDaemon is event-driven and mostly remains dormant
due to the infrequent update of GuardRule.

The workflow of InstaGuard mechanism is shown in Fig-
ure 6. Upon a GuardRule update, iDaemon wakes up to parse
the rule headers (Step 1 ). According to the headers, it then
signals the iMonitor in affected processes about the new rule
(Step 2 ). After being notified, the iMonitor parses the rule
body. For efficiency, we do not sandbox the parser, since
the rule source is trusted and can be verified. As per the
rule, iMonitor then requests iDriver to register needed BP and
WP (Step 3 ). After verifying the identity of the requesting
iMonitor, iDriver initializes the BP and WP bookkeeping data
in the PCB (Process Control Block) of the requesting process.
Later, when a monitored process with registered BP/WP gets
the CPU and is about to start/resume its execution, iDriver
populates the saved BP/WP setup information from the PCB to
the available hardware debug registers (Step 5 and 6 ). Note
that when serving the BP/WP registration requests, iDriver
loops through all the PCBs with the same thread group ID
and registers the rule for each one of them. This ensures that
all threads in a vulnerable program are properly protected.

When a BP or WP debug exception is triggered, iDriver
raises a signal to the corresponding process (Step 4 ). iMonitor
later receives the pending signal when the execution returns
from kernel to user mode. Since kernel will always check if
a process has pending signals before return the control back
to user mode. The raised signal will guarantee iMonitor to
take over the execution immediately. iMonitor reacts to the
signal by following the actions defined in the corresponding
GuardRule (Step 7 ), such as (de)registering BP/WP or per-
forming assertion evaluation.
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2) Security and Safety of InstaGuard: We establish a chain
of trust among the InstaGuard components, rooting in the
trusted OS. This chain of trust minimizes the attack surface
of InstaGuard and prevents attacks against InstaGuard itself.
Specifically, iDaemon verifies the source and integrity of
every new GuardRule by signature checking. Every received
GuardRule is kept read-only on user devices and is only
updatable by iDaemon, enforced using SEAndroid policies.
Before responding to a signal, iMonitor checks its source PID
to ensure it indeed comes from iDaemon. Similarly, iDriver
verifies that incoming requests are always from iMonitor.

Our design prevents InstaGuard from malfunctioning or
being abused when a buggy or broken GuardRule is deployed
(i.e., flawed rules do not pose security threats to the system).
This benefit is enabled by the restrictive nature of GuardRule
and the separation between rules and mechanisms. Specifi-
cally, GuardRule never introduces new code or data into user
devices and InstaGuard only impose more, and cannot uplift
any, restrictions on program executions. Therefore, a faulty
rule cannot create new execution paths in affected programs.
In contrast, previous hot-patch solutions all face a security
concern that these techniques themselves, when failed, can
easily allow disruptive or even malicious code being introduced
to protected programs.

D. GuardRule: Generically Blocking Exploits

GuardRule is a low-level, XML-based rule that, when
pushed to the client-side, instructs the InstaGuard mechanism
to block exploitations of a vulnerability. The major components
and fields of a GuardRule are shown in Table II.

At a high level, each rule consists of a header and a
body. The header contains the rule ID, the vulnerable module
identifier, and the action upon violation (or alert decision).
Our current prototype supports two kinds of alert decision,
namely “BLOCK” and “AUDIT”, which will terminate the
faulting program or simply record the alert event, respectively.
These two alert decisions are sufficient for our purpose of
demonstrating and testing the InstaGuard prototype because
most of the monitored programs (e.g., the Android framework
daemons and services) are capable of self-recovering from
a crash or abrupt termination. Nevertheless, it is possible to
extend the decisions to support more actions such as rollback
to benign state, we discuss this more in § VII.

In the rule body, three lists of breakpoint (BP), watchpoint
(WP) and assertion (AS) could be specified. A BP is defined
by the following fields: <first, address, action>. The
first field indicates whether the BP should be registered
immediately when installing the rule. The address field
denotes where the BP should be placed. The action field
references to the next primitive (e.g., an AS or another BP) to
activate when this BP is triggered. Each rule should contain

TABLE II: Major GuardRule components and corresponding fields
Component Fields
GuardRule-Header Rule ID: <Rule id, Vulnerability type>

Target Module: <Binary path, Module name>
Alert Decision: <BLOCK | AUDIT>

GuardRule-Body Breakpoints: [<first, address, action>, ...]
Watchpoints: [<first, address, size, action>, ...]
Assertions: <relation, [<constraints>, ...], action>

at least one BP as the primitive chain initiator, expressing at
which point during the program execution should InstaGuard
pause the program and take an action.

A WP is used in a rule when, for example, an in-memory
variable needs to be tracked. A WP contains the three fields
that a BP has plus a size field, which specifies the memory
range to be watched.

An AS contains a relation field that expresses the rela-
tionship among defined data constraints. Currently, we support
“AND” and “OR” relation operators for combining multiple
data constraints. A data constraint contains a left-hand-
side expression, a right-hand-side expression, and an operator
connecting the expressions. An example of an AS is shown on
Line 16–31 in Figure 3.

The basic primitives and the GuardRule syntax allow
InstaGuard to intervene in program execution at instruction
level, track in-memory data access, and evaluate assertions and
runtime conditions. Via the action field for each primitive, the
GuardRule syntax further allows the primitives to be chained
and triggered in order under defined conditions. As a result,
GuardRule is expressive and flexible enough to define mitiga-
tions for a wide range of vulnerabilities, including logically
complicated use-after-free bugs, which is later demonstrated
in § V.

E. RuleMaker: Rule Generation Assistance

1) Vulnerability Categorization: Informed by our study of
the real-world bugs reports, we organized common Android
vulnerabilities into 7 buckets, shown in the left column of
Table III. Note that, in practice, vulnerabilities are typically
caused through a chain of bugs. For instance, most of the
reported buffer overflow vulnerabilities related to libstagefright
are caused by integer overflows. A large amount of reported
race condition and use-after-free (UAF) vulnerabilities are
actually caused by combinations of logic bugs. For example,
CVE-2016-8655 is labeled as race condition and CVE-2016-
6707 is reported as a UAF bug, while they all find their roots
in various logical errors.

2) GuardSpec and RuleMaker: We design the GuardSpec
format for InstaGuard users to describe to-be-patched vul-
nerabilities at ease. We build RuleMaker to automatically
synthesize GuardRule from GuardSpec. A GuardSpec is a
high-level description of a vulnerability using a simple syntax.
An example GuardSpec is shown in Figure 4.

A concise guideline for composing GuardSpec for common
types of vulnerabilities is given in Table III. For each type of
vulnerability, we list the required fields in a GuardSpec. The
fields are intuitive. For instance, the vul_location field specifies
the source-level location of the bug. It is a 3-tuple containing
the source code line number, the function name, and the source
file. The information needed for filling these fields can be
collected from a regular bug report (i.e., security analysts can
easily collect such information and compose GuardSpec while
investigating bug reports). The Appendix has more GuardSpec
examples defined for each vulnerability category in Table III.
It is worth noting that, for UAF vulnerabilities, we provide two
options to block them (i.e., two ways to write GuardSpec for
a UAF): one blocks the faulty free operation, the other blocks
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the faulty use operation. The difference is that, blocking faulty
free is generally more lightweight than blocking faulty use;
however, it is not always easy or possible to discern a faulty
free from a legitimate one due to memory aliasing, in which
case blocking faulty use is the only option.

RuleMaker takes GuardSpec as input and generates
GuardRule, hiding from users InstaGuard’s low-level primi-
tives and undertaking the tedious and error-prone tasks, such as
symbol address resolution. During the synthesis process, fields
in the GuardSpec-header are directly converted to the top-
level XML components of the resulting GuardRule. However,
the selection and activation order of primitives are not as
straightforward. We developed the synthesis templates, one for
each vulnerability type, based on our empirical experiences. As
shown in Table IV, the templates guide RuleMaker, for each
vulnerability type, to generate the optimal sequence of primi-
tives needed for mitigating the vulnerability and concretize the
parameters using data extracted or inferred from the fields in
input GuardSpec.

As for symbols, such as variable names, RuleMaker
translates them into a series of retrieval routines. Insta-
Guard supports register and memory based retrieval rou-
tines, expressed as node in the XML-based GuardRule.
They are in the format of <reg_$regid_$length> and
<mem_$baseid_$offid_$length>, respectively. A register
retrieval routine is intuitive. It specifies which register to read
and what is the size. All general-purpose registers can be
retrieved. For a memory retrieval routine, the fields baseid
and offid are node ID(s) that reference to nodes of type reg-
ister, constant, or memory (for multilevel memory accesses).
This scheme allows InstaGuard to cover both direct and
indirect memory accesses, which enhances the expressiveness
of GuardRule. For instance, when an interested variable is
stored in a temporary register (e.g, Figure 3), InstaGuard
can efficiently retrieve that value and support GuardRule
referencing that temporary variable.

For generating these resolving rules, RuleMaker relies on
full debug information of the reported vulnerable binary, the
debug information can be in-house prepared since vendors are
in control of the source code. More resolving challenges are
further described in § IV.

F. Satisfied Requirements

We now examine if our design of InstaGuard satisfies the
practical requirements (R1-R4) listed in § II-D. InstaGuard nat-
urally meet R1 (non-code patches), we show that InstaGuard
is solely driven by GuardRule, and it does not introduce new
code to the to-be-patched system. This is needed to bypass
the lengthy regression tests required by carriers. The test is
mandatory for all system code updates. In addition, more
GuardRules always impose more restrictions and checks on
the execution of the target program, had anything goes wrong,
attackers can not do arbitrary things by introducing (malicious)
rules. This, combined with the non-code update, can guarantee
that InstaGuard as a hot-patch system will not be abused at all
times. Moreover, InstaGuard is robust against buggy rules, it
can recover from any access violations caused internally and
prevent the program execution from being disrupted. Thus, R2
(restrictive patching) is satisfied.

TABLE III: GuardSpec defined vulnerability types and corresponding
required fields, which can be extracted from bug reports.

Vulnerability type Required fields
Logic bug vul_location: <func_name, func_line, file_name>

vul_content: <relation_op, lexp, rexp>
Integer overflow vul_location: <func_name, func_line, file_name>

vul_content: <overflow_direction, exp, value>
Out-of-bound access vul_location: <func_name, func_line, file_name>

vul_content: <index_var, buf_size_var>
Buffer overflow vul_location: <func_name, func_line, file_name>

vul_content: <buf_name, buf_size>
Format string vul_location: <func_name, func_line, file_name>

vul_content: <str_var>
Race condition vul_location: <racer_1, racer_2>

vul_content: <var1_in_racer1, var2_in_racer2>
racer_1 <func_name, func_line, file_name>
racer_2 <func_name, func_line, file_name>

Use-after-free (UAF) (Block faulty use):
vul_location: <free_loc, use_loc>
vul_content: <free_buf, buf_size>

free_loc <func_name, func_line, file_name>
use_loc <func_name, func_line, file_name>

(Block faulty free):
vul_location: <func_name, func_line, file_name>
vul_content: <relation_op, lexp, rexp>

Combining with the primitive coordination, InstaGuard is
capable to fix the commonly seen vulnerabilities such as
memory corruptions (including both the spatial and temporal
ones), integer overflow as well as the more generic logic bugs.
Hence R3 (comprehensive coverage) is met.

To use InstaGuard, one only needs to prepare RuleMaker
with the high-level information based on the vulnerability
type, the fixing GuardRule will be generated automatically,
freeing the users from dealing with the low-level machine-
facing primitives, which, suggests R4 (ease of use).

IV. SYSTEM IMPLEMENTATION

We have built a prototype consists of InstaGuard based on
LG Nexus 5X, which is equipped with Qualcomm Snapdragon
808 and 2GB RAM. The CPU features the ARM big.LITTLE
architecture with two high-performance Cortex-A57 cores and
four slower Cortex-A53 cores. The Android version we used
is based on AOSP_6.0.1_r8 (Marshmallow) with Linux kernel
v3.10 (64-bit). In the rest of the section, we discuss the
implementation challenges and how we addressed them.

A. InstaGuard Implementation Challenges

InstaGuard primitive implementation: The breakpoint and
watchpoint primitives in InstaGuard are enabled by the ARM
hardware debug unit [4]. This allows InstaGuard to enable the
protection without touching the process memory. On the other
hand, this choice puts a limit on the number of vulnerabilities
InstaGuard can mitigate simultaneously in a thread/process.
Nevertheless, we find the number of available hardware debug
registers in an ARMv8 CPU is largely sufficient for our
purpose: Figure 7 shows the life cycle of all the critical
vulnerabilities in the Android system binaries from Android
Security Bulletin 2016. At any point of time, the total number
of vulnerabilities in a specific Android system program is less
than the number of hardware debug registers, i.e., InstaGuard
can cover the whole set of the vulnerabilities. Note that we save
and restore the hardware debug registers during the context
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TABLE IV: GuardSpec to GuardRule synthesis rules. (i)Numbers following the primitives indicate their IDs and are used to establish the
connection; (ii)The fields following symbol “@” are translated to machine-oriented addressing rules using registers, memory accesses or
simply constant value.

Vulnerability Synthesis rules Comments
Logic bugs • BP(1) <address = @vul_location, first = true, action = AS(1)> self-explainatory

• AS(1) <action = decision, constraints = [<@relation_op, @lexp, @rexp>, ...]>
Integer overflow • BP(1) <address = @vul_location, first = true, action = AS(1)> Can cover overflow

• AS(1) <action = decision, constraints = [<overflow_direction, @expression, @value>, ...]> and underflow.
Out-of-bound access • BP(1) <address = @vul_location, first = true, action = AS(1)> LT as “less than”.

• AS(1) <action = decision, constraints = [<LT, @index_var, @buf_size_var>, ...]>
Buffer overflow • BP(1) <address = @(vul_location - 1), first = true, action = INSTALL WP(1)> Context-binding

• WP(1) <address = @buf_name+@buf_size, size = WORD, first = false, action = AS(1)> watchpoint (see
• AS(1) <action = decision, constraints = [<W/I, @reg_pc_64, @vul_location>, ...]> § IV-B).
• BP(2) <address = @(vul_location + 1), first = false, action = REMOVE WP(1)>

Format string • BP(1) <address = @vul_location, first = true, action = AS(1)> IN as set membership
• AS(1) <action = decision, constraints = [<IN, “%”, @str_var>, ...]> operator.

Race condition • BP(1) <address = @(racer(a)_start_location), first = true, action = flag_set? AS(1): SET flag>
• BP(2) <address = @(racer(a)_end_location), first = true, action = UNSET flag> Simulate locking
• BP(3) <address = @(racer(b)_start_location), first = true, action = flag_set? AS(1): SET flag> operations.
• BP(4) <address = @(racer(b)_end_location), first = true, action = UNSET flag>
• AS(1) <action = decision, constraints = [<EQ, @AddrOf(var1), @AddrOf(var2), ...]>

Use-after-free • BP(1) <address = @free_location, first = true, action = INSTALL WP(1)> W/I as “within range”.
(Block faulty use) • WP(1) <address = @freed_buf, size = @buf_size, first = false, action = AS(1)> reg_pc as “value in

• AS(1) <action = decision, constraints = [<W/I, @reg_pc, @use_location>, ...]> pc register”.
Use-after-free • BP(1) <address = @vul_location, first = true, action = AS(1)> self-explainatory
(Block faulty free) • AS(1) <action = decision, constraints = [<@relation_op, @lexp, @rexp>, ...]>

switch. Therefore, each thread can use all the hardware debug
registers.
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Fig. 7: Lifespan for all system binaries that had critical vulnerabilities
reported in Android Security Bulletin 2016 [9].

Hardware debug registers are often used by Linux’s perf
subsystem. perf is an architecture-independent performance
profiling framework in Linux. This is achieved by using
multiple layers of abstraction, leading to poorer performance.
Therefore, our prototype directly operates on the hardware
debug registers, bypassing the perf subsystem. Moreover,
the hardware debugging module is, by default, not compiled
into the Android kernel for performance reasons 1. Therefore,
debuggers relying on perf-based interfaces, such as ADB and
GDB, are unaware of the hardware debug registers. They
instead use software instruction breakpoints. This allows ADB
and InstaGuard to co-exist.

Hardware exception pitfall: We use hardware debug registers

1The flag CONFIG_HAV E_HW_BREAKPOINT is not set in the
kernel configure file.

to implement InstaGuard’s breakpoint/watchpoint primitives.
When a break/watch point is hit, the CPU triggers a hardware
debug exception before the exception-triggering instruction is
executed. The exception is reflected back to the monitored
process (as a signal) for handling. Note that this scenario is
different from how traditional debuggers (e.g, gdb) handle
breakpoints: traditional debuggers are standalone processes
whose own execution will not interfere with the debugged
process. In our case, iMonitor is both the debugger and the
debugged. This creates a dilemma: we cannot simply resume
the execution of the monitored process because that will re-
trigger the breakpoint; we also cannot simply disable the
breakpoint and resume the process because this removes the
breakpoint (i.e., the next invocation of the function cannot
be protected). This problem can be easily addressed in a
traditional debugger by enabling single-step execution when
the breakpoint is hit. However, this solution is not feasible
in InstaGuard, otherwise every instruction executed by the
breakpoint handler (iMonitor) will be trapped to the kernel. To
address that, we temporarily disable the firing breakpoint and
allow iMonitor to process the breakpoint (as a signal). After
handling the exception, iMonitor calls sys_rt_sigreturn
to notify the kernel to resume the execution of the target
process. The kernel then enables the single-step execution to
allow execution of the faulting instruction. The CPU executes
the faulting instruction and triggers a single-step exception. In
the single-step exception handler, we reenact the previously
disabled breakpoints and disables the single-step execution.
This way, both the functionality and security are preserved.

Address Space Layout Randomization: GuardRules require
absolute addresses to enable protection. However, RuleMaker
can only encode the offsets in a GuardRule because the
translation of GuardSpec to GuardRules happens off-line. To
get the correct run-time addresses, we need to know the base
address when the binary is (randomly) loaded. To this end,
iDriver traverses the process’ list of the VMA (virtual memory
area) structures to find the load address of the binary and adds
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it to the offsets to finalize the GuardRules.

Communication between components: InstaGuard’s compo-
nents communicate using the signal IPC mechanism. After
a system-wide survey, we choose the SIGUSR2 signal for
this purpose because SIGUSR2 is not used by any Android
system components. We modify the bionic linker to load
iMonitor in target processes and registers iMonitor’s function
as the handler for SIGUSR2. Moreover, we hook the signal
registration routine in the kernel to protect our handler for
SIGUSR2.

B. RuleMaker Translation Challenges

Variable resolution: One critical support we provide to Insta-
Guard users is variable resolution so that they can use source
code symbols to write GuardSpec. We can resolve global,
local, and heap variables. To achieve that, we utilize the debug
information [2]. The DWARF debug format provides the useful
information about variable types, their scope, and the steps
to locate a variable in the given scope. Scope is important.
RuleMaker will prompt error if the variable to lookup is not
active in the scope of the target breakpoint. The variable reso-
lution module of RuleMaker is built on top of pyelftools [3].
It uses the DW_AT_LOCATION and DW_AT_TYPE fields to
locate variables and their types. The variable retrieval rules are
encoded in GuardRule and interpreted by iMonitor at runtime,
as described in GuardRule (§ III).

To generate full debug information, we added some extra
flags to the compilation options2 when building the Android
images. However, there are rare cases that the locations of
some variables are missing due to aggressive compiler op-
timizations. For instance, the local variable numRects of
the function Region::flatten in libui.so is optimized
away. There is no DW_AT_LOCATION tag for this variable in
the debug information (see § V). In this situation RuleMaker
prompts the user for assistance to locate the equivalent vari-
able.

We want to point out that the released Android binaries
can have the debug information stripped because RuleMaker
is run offline. Only the developer needs to have access to the
debug information to translate GuardSpec to GuardRules.

Context-binding watchpoints: Unlike breakpoints which are
associated with code addresses, watchpoints are associated
with variables. However, it is possible that a watched variable
have multiple versions alive at the same time. For example, to
protect a stack-based buffer overflow vulnerability, InstaGuard
needs to monitor the local buffer variable. If the vulnerable
function is called recursively, there is a different version of
the buffer for each stack frame of this function. The avail-
able hardware watchpoints will be quickly exhausted in this
case. To address this problem, we propose a technique called
context-binding watchpoint. The basic idea is to associate a
WP with the current execution context and save/restore the
WP when the stack frame changes. By doing so, we can reuse
the watchpoints for each function activation. We implement

2-ggdb -fstandalone-debug for CLANG, -fvar-tracking -ggdb
-fvar-tracking-assignments for GCC.

this technique with the assistance of BPs, which are naturally
context-associated. Specifically, we use BPs to monitor the
faulting code execution, install and remove the WP when
entering and leaving the faulting code region, respectively.

Source code location translation: Sometimes, RuleMaker
needs to generate rules to verify whether certain memory
access comes from a specified source code location, for exam-
ple, to detect buffer overflow (Table II). However, the source
code to machine addresses translation is not always a one-to-
one mapping in the compiled binary. In that case RuleMaker
encodes the code ranges in the assertion primitives.

V. ANALYSIS AND EVALUATION

A. Security Analysis

We now analyze our system design against bypass and
manipulation attempts from attackers. We assume the attacker
has already gained a foothold in an untrusted app running on
the user device. Her goal is to exploit a known vulnerability
protected by InstaGuard in a high-privilege system daemon.

There are multiple attack surfaces the attacker may try to
abuse. Firstly, she may try to trick iDaemon into initiating
the GuardRule removal process in the target process. This
attempt will be foiled because iDaemon does not accept rules
whose cryptographic signature does not match the one from
the trusted source. This protection is similar to how the
SEAndroid rules are verified when an OTA update is released
to user devices. Secondly, the attacker may try to directly
signal the target iMonitor. This will not succeed either because
iDriver will kill any sender process of SIGUSR2 other than
iDaemon. Last but not least, the attacker may try to abuse the
interface between iMonitor and iDriver (similar to syscalls)
from a compromised process to remove the rule enforcement
in the target process, a confused deputy attack. This attack is
prevented because iDriver only serves the iMonitor requests in
the context of requesting process.

B. Empirical Evaluation

In our empirical evaluation, we try to answer the following
questions: (i) Is GuardSpec and GuardRule expressive enough
to cover a wide range of vulnerabilities in the different
categories? (ii) How much effort it requires for security experts
who do not know InstaGuard internals to compose an effective
GuardSpec? and (iii) What is the performance and memory
impact introduced by the installed rules?

Vulnerability coverage: We sampled 30 critical vulnerabilities
in the native code of the Android framework from the year
of 2016. These vulnerabilities can be roughly categorized
into integer overflows, buffer overflows, out-of-bound accesses,
and logic bugs. All these vulnerabilities can be expressed in
GuardSpec and successfully lowered to GuardRule, as shown
in Table V. In the following, we report our observations in
writing rules for these vulnerabilities.

First, it seems that spatial memory corruptions and logical
bugs prevail in the native framework code, while vulnerabilities
like format-string vulnerabilities are rare in the Android frame-
work probably due to the improved static-analysis tools used in
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TABLE V: Covered Vulnerabilities. Entries with (*) are done by security experts from collaborating vendor
CVE number Vulnerability type Affected module name Bug description # of lines

in Guard-
Spec

Example
GuardSpec

(Ap-
pendix)

2016-0811 integer overflow libmedia.so The sum of offset and totalSize could wrap around 9
2016-3822 integer overflow libjhead.so Integer overflow in ProcessExifDir 9
2016-0803 integer overflow libstagefright_soft_mpeg4enc.so Product of mWidth and mHeight could exceed INT32_MAX / 3 9
2016-3744 integer overflow libdeqp.so Integer overflow in create_pbuf 9
2016-0815 integer overflow libstagefright.so The sum of dstOffset and mBuffer->size() can wrap around 9
2016-0837 integer overflow libstagefright.so Missing bound check and integer overflows in MPEG4Source::read 15 A.1
2016-2463 integer overflow libstagefright.so Product of pStorage->picSizeInMbs and u32 could overflow a 32-bit integer 9
2016-0827 integer overflow libreverbwrapper.so SIZEOF(effect_param_t) + p->psize could exceed SIZE_MAX 9
2016-0849 integer overflow libminzip.so range_count * SIZEOF(MappedRange) could overflow a 32-bit integer 9
2016-2428 integer overflow libFraunhoferAAC.so The number of threads could exceed MAX_DRC_THREADS 9
2016-3895* integer overflow libui.so Product of numRects and Rect could overflow a 32-bit unsigned integer 9
2016-3872 integer overflow libstagefright_soft_vpxdec.so Integer overflow in SoftVPX::outputBuffers 9
2016-3819 integer overflow libstagefright_soft_h264dec.so Product of picSizeInMbs and 384 could exceed UINT32_MAX 9
2016-2451 buffer overflow libstagefright_soft_vpxdec.so Buffer overflow in parameter dst 7
2016-2484 buffer overflow libstagefright_soft_amrdec.so Buffer overflow in outHeader->pBuffer 7
2016-3863 buffer overflow libstagefright.so Stack overflow in AVCC reassemble 7
2016-2485 buffer overflow libstagefright_soft_vpxenc.so Buffer overflow in outHeader->pBuffer 7 A.2
2015-1474* buffer overflow libui.so Buffer overflow in h->data 7
2016-3871 buffer overflow libstagefright_soft_avcenc.so Buffer overflow in outHeader->pBuffer 7
2016-2494 buffer overflow sdcard Buffer overflow in path building 7
2016-0836* out-of-bound access libstagefright_soft_mpeg2dec.so OOB access of pu1_pos with index pi4_num_Coeffs 7 A.3
2016-0840 out-of-bound access libstagefright_soft_avcdec.so OOB access of i2_level_arr with index u4_total_coeff-1 7
2016-6707 Use-after-Free libandroid_runtime.so Sizes used in mmap and munmap are mismatched (block free) 8 A.4
2016-3861* logic bug libutils.so Incorrect logic when counting length of converted string 8
2016-0835 logic bug libmpeg2dec.so Miss sanity check when processing input 8
2016-2417 logic bug libmedia.so Forgot to sanitize the allocated memory 8
2016-2418 logic bug libmedia.so Incorrect logic as miss sanity check on return value 8 A.5
2016-2419 logic bug libmedia.so Info leak as unsanitized variable 8
2016-3826 logic bug libaudioresampler.so Miss sanity check on cmdCode and replySize before using it 15
2016-0816 logic bug libavcdec.so Incorrect logic when counting decoded bytes 9

the development. Second, we can compose GuardSpec for each
vulnerability by filling in the required fields of the templates
in Table III. Most fields can be conveniently extracted from
the associated bug reports. Third, most GuardSpec rules are
less than 10 lines, with only two exceptions. These two rules
contain more assertions. For example, CVE-2016-0837, an
integer overflow, can be exploited to cause out-of-bound access
and eventually arbitrary-writes. The vulnerable code has the
following insufficient bound check, CHECK(dstOffset +
4 <= mBuffer->size()). An attacker can bypass this
check by overflowing dstOffset + 4. Moreover, the code
simply forgets to check the bound for a subsequent access to
the buffer. InstaGuard can protect this vulnerability by supple-
menting the original check with two additional assertions to
prevent the overflows.

There are some CVEs which are hard to protect without
risking availability lost, for instance, CVE-2016-2417 and
CVE-2016-2419, the vulnerabilities could cause info leak as
a consequence of uninitialized stack and heap variables. For
these two vulnerabilities, we switch the decision to AUDIT
in their GuardSpec files, to preserve the availability of the
affected functions. This is an indication that InstaGuard should
be applied to vulnerabilities that pose direct security threat (i.e,
control flow hijacking) to the to-be-patched programs. A few
additional GuardSpec samples for each category are presented
in the Appendix.

Lastly, when a POC (Proof-Of-Concept) exploit is avail-
able, we installed the corresponding GuardRule and test if
InstaGuard can report and block the exploit. When a POC
exploit is absent, we studied the released patches to manually
check the correctness of the composed GuardSpec. We verified
that InstaGuard can capture all the exploits (no false negatives)
and preserve the availability of the affected functions.

TABLE VI: Reported time for composting effective GuardRule.

 
 
 
 
 

 InC compose 
time (mins) 
 

InC 
Line# 
 

InP 
Line# 
 

CVE-2016-3895 40 9 52 
CVE-2016-0836 20 7 45 
CVE 2016-3861 15 8 55 
CVE-2015-1474 15 7 94 
Avg. 22.5 7.75 61.5 

 

GuardSpec composing efforts: To measure the efforts to
compose an effective GuardSpec, we selected 4 critical vul-
nerabilities from Table V, one from each category, and asked
four security engineers of our collaborating vendor to write
GuardSpec for them. We timed the whole process for them
to write GuardSpec and use RuleMaker to translate it to
GuardRule. Table VI shows the time required to complete the
tasks. On average, they were able to produce an effective and
correct GuardSpec and translate it into GuardRule in about
22.5 minutes. Three participants succeeded at the first try. It
took more time in the case of CVE-2016-3895 because the
debug information did not provide the lookup rule for the
related variable numRects. Consequently, RuleMaker failed
to emit the retrieval rule for that variable. The participant
had to manually identify the location of that variable. It turns
out that, because numRects only contains the first field of
the input buffer, the compiler simply emits the code to read
from the buffer. This completely eliminates the local variable
numRects. To examine the quality of the written rules, we
applied them to the test phone and verified that the previously-
working related POC exploits no longer work (e.g, [11]).

Performance and memory overhead: we further verify that
normal operation of the phone is unaffected and measure the
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TABLE VII: InstaGuard performance and memory overheads.

 SLoC Language 
RuleMaker 754 Python 
iDaemon 1184 C++ 
iMonitor 1567 C++ 
iDriver 1175 C 

 
 
 
 
Vulnerability Type CVE Assignment 
Buffer Overflow 2016-2484, 2016-2485, 2016-2451, 

2016-3863, 2016-3744, 2016-9564, 
2016-2494, 2016-3871 

Out-of-Bound 2016-0836, 2016-0838, 2016-0839, 
2016-0840, 2016-0841, 2016-0842 

Integer Overflow 2016-2463, 2016-0815, 2016-0811, 
2016-3895, 2016-2428, 2016-3819, 
2016-3822, 2016-3872, 2016-0803, 
2016-0827, 2016-0837, 2016-0849, 
2016-2476 

Logic Bug 2016-0816, 2016-0835, 2016-3861, 
2016-2417, 2016-2418, 2016-2419, 
2016-3823, 2016-3824, 2016-3826 

Use-after-Free 2016-6707 
 
 
 
 
 Used 

Primitives 
Root Cause Memory 

Overhead(%) 
Runtime 
Slowdown(%) 

CVE-2016-3895 (1x)BP, (1x)AS Integer Overflow 0.37% 2.89% 
CVE-2016-0836 (1x)BP, (1x)AS Out-of-Bound 4.11% 3.27% 
CVE 2016-3861 (1x)BP, (1x)AS Logic Bug 1.08% 2.70% 
CVE-2015-1474 (2x)BP, 

(1x)WP, (1x)AS 
Buffer Overflow 1.19% 1.94% 

Avg.   1.69% 2.70% 
 
 
 
 
 
 
 
 
 

performance overhead caused by InstaGuard. We tested the
four GuardRule rules representing 4 different categories of
vulnerabilities listed in Table VII. For triggering the vulnerable
code path, we used either the test programs released together
with the vulnerable library (e.g, mpeg2dec) or searched for
system services that used the target binary. For instance,
libui.so is used by the bootanimation program, and when we
execute bootanimation the vulnerable code path in CVE-2015-
1474 will be triggered. This way, we make sure all benign
executions went through the vulnerable code path at least once;
i.e., (part of) the patches are guaranteed to be exercised. Each
test was run 20 times. We used getrusage() to collect the
average execution time with and without GuardRule installed.
Table VII shows the runtime and peak memory overheads.

On average, the performance overhead is 2.7%. It is worth
noting that, although the required primitives for CVE-2015-
1474 are twice as many as the others, its watchpoint was
never triggered under this input. Its overhead is mainly caused
by the two breakpoints. The overhead of CVE-2016-0836 is
higher because its original execution time is shorter, which
amplifies the overhead caused by executing the patch. The
average memory overhead is 1.69%. The main source of
overhead comes from iMonitor. The variable sizes of the rules
are negligible. These evaluation results show that InstaGuard
incurs unnoticeable overheads in terms of both performance
and memory overheads. Furthermore, to measure how perfor-
mant InstaGuard is when protecting multiple vulnerabilities in
the same process, we created a wrapper service that contains
the aforementioned 4 types of the vulnerabilities and applied
the corresponding GuardRules. We created the test input to
trigger the vulnerable code path, each 20 times. The average
total performance overhead is 9.73%, which represents the
accumulative overheads from each GuardRule.

Overall, we can estimate that the performance overhead
caused by one breakpoint is about 0.97% and 2.01% for eval-
uating an assertion. We note that these overhead is an upper-
bound since in practice the end-to-end slowdown depends on
how frequently the vulnerable code path is executed. It is far
more likely that security vulnerabilities exist in the cold paths
as they are less tested [36].

VI. RELATED WORKS

A. Hot-patching

Many hot patching techniques have been proposed, in-
cluding those for computer programs [30], [21], [18], [20],
[24], [26], for the Linux kernel [35], [6], [19], and more
recently, for Android [28], [22]. Despite their different designs
and implementations, the existing hot-patching systems all
follow the similar basic approach–injecting hot-patches as
executable code into target programs in order to disable or

replace the vulnerable code. As revealed by our study (§ II),
this approach does not consider the unique constraint facing
code patches for mobile devices (i.e., all patches to system
code are subject to lengthy carrier-imposed tests). Therefore,
the existing hot-patching methods see little adoption on mobile
devices, despite that mobile devices in fact urgently need hot-
patching capabilities.

In contrast, we follow a completely different approach,
namely rule-driven hot-patching, when designing InstaGuard.
Our approach enables “carrier-passthrough” hot-patches that
do not carry or inject code and are restrictive by design. More-
over, to ease and speed up the hot-patch development process,
we design a simple vulnerability description language and an
automatic rule synthesizer. They allow human developers to
quickly produce hot-patches without having to understand the
hot-patching mechanics, which is not required by previous
systems.

IntroVirt [26] injects code predicates to vulnerable pro-
grams to block exploitations. These predicates are executable
code pieces that use the low-level debugging primitives to
intercept executions and check conditions. In comparison,
InstaGuard avoids code patches and follows a rule-driven
approach. InstaGuard internally also uses the debugging primi-
tives, but unlike IntroVirt, InstaGuard does not expose the low-
level debugging primitives to human users and is accompanied
by RuleMaker, making hot-patch (or rule) development much
less demanding.

For Android apps, PatchDriod [28] uses a dynamic code
injector to apply either binary or Dalvik patches in memory.
KARMA [22] is a recent system for live patching Android
kernels. Its patches are written in an interpretation-based lan-
guage, Lua, and executed by an interpreter planted in Android
kernels. Thanks to the use of the scripting language, KARMA’s
patches do not need to be binary-compatible with individual
device models, which are highly fragmented. KARMA rep-
resents a variant of the traditional code-based hot-patching
techniques, whereas InstaGuard’s rule-driven approach is a
departure from the existing techniques and emphasizes carrier-
passthrough, patch safety,and fast patch development.

B. Automatic Bug Detection and Mitigation

This line of research is related to InstaGuard in that
they represent parallel methods for reducing the vulnerability
response or patching time. DIRA [34] removes certain control-
hijacking vulnerabilities from programs via recompilation. Au-
tomatic patches were also used to defend against worms [33].
VSEF [29] hardens program binaries by filtering out execution
traces that correspond to exploitations of specific vulnerabil-
ities. First-Aid [23] monitors program execution for memory
management bugs. When it determines such a bug is triggered,
it reverts the program execution to the last checkpoint and
allow it to proceed with patched code.

Compared to these systems. InstaGuard can efficiently and
effectively catch exploit attempts for known vulnerabilities.
instead of detecting and patching after the attack or delaying
the protection until the attack happened. Also, InstaGuard does
not introduce code changes and ensures patch safety, which is
more ideal for the Android ecosystem where traditional code
patches cannot be quickly deployed to vulnerable devices.
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C. Rule-driven Security Defense

Program shepherding [27] is a classic example of rule-
based protection of program execution. Its rules can specify
executable code origins, restrict control transfers, and prevent
bypasses of checks. It uses a dynamic code instrumentation
tool for policy enforcement. Another common example of
rule-based security is program access controls, either discre-
tionary or mandatory. These and other similar works have
demonstrated a key benefit of the rule-driven approach—the
separation between mechanisms and policies. These works
inspired us to design a rule-based approach to hot-patching. On
the other hand, we also took an important lesson from previous
rule-based systems: without supporting easy rule generation,
such a system is unlikely to be used in practice. To enable
easy and quick development of GuardRule, we designed the
simple GuardSpec language and RuleMaker to automatically
synthesize GuardRule from low-level GuardSpec.

Talos [25] is a recent vulnerability mitigation system. It
pre-plants a kill-switch in every function in a program. When
a function is later found vulnerable, it activates the corre-
sponding kill-switch to disable that function. Talos achieves
vulnerability mitigation without using code patches. However,
it has to disable entire functions that contain vulnerabilities
(i.e., reduced program functionality). This is because Ta-
los only recognizes activation commands for function kill-
switches, rather than comprehensive rules (e.g., GuardSpec)
that describe the precise triggering conditions for various kinds
of vulnerabilities.

VII. DISCUSSION AND FUTURE WORK

Hardware debug registers: Our current prototype uses the
hardware debug unit of ARMv8 to support InstaGuard’s break-
point and watchpoint primitives (§ IV). The current ARMv8
CPUs can support up to 32 break/watch points [4]. This imple-
mentation choice might limit the number of total GuardRules
that can be supported in a single vulnerable process. However,
our survey of all the critical vulnerabilities reported in Android
Security Bulletin 2016 shows that the available hardware
registers are sufficient to protect every Android system binary
(Fig. 7). Note that we save and restore the GuardRules during
the context switch. Therefore, each process can use all the
hardware debug registers. In addition, we can easily extend
the current InstaGuard implementation to support unlimited
number of breakpoints with software instruction breakpoints.
Moreover, InstaGuard aims at protecting released programs on
consumer Android devices, rather than programs running in
debugging mode, in which case InstaGuard should be disabled
for those programs to avoid interfering with their debugging.

Response to detected attacks: Our prototype supports two ac-
tions in response to detected attacks: “BLOCK” and “AUDIT”.
The former terminates the faulting process, while the latter
simply records the alert event. This choice is sufficient for
our prototype because most of our target programs (Android
system daemons and services) can recover from crashes or
abrupt termination. Moreover, our framework does allow more
sophisticated response to attacks: when a breakpoint is hit, the
kernel saves the current process states to the stack. InstaGuard
can manipulate the saved states to change the process’ control

flow or its data. For example, we can set the error code
(by changing the saved register) and jump directly to the
function’s return instruction (by changing the saved program
counter) if the function has proper error-handling code, similar
to Talos [25] and KARMA [22]. Nevertheless, attack recovery
is a challenging problem. We consider it out of the scope for
this paper and leave it as the future work.

Kernel protection and project Treble: InstaGuard focuses on
protecting the Android user space from attacks and considers
the kernel is trusted. Existing systems such as KARMA [22]
have been proposed to protect the integrity of the Android ker-
nel. On the other hand, InstaGuard can shield the kernel from
some exploits originated from the user space by protecting the
Android system binaries from attacks. A common way to gain
the root privilege on Android is to compromise the vulnerable
system daemons [14], [31].

Project Treble is a new feature in the Android O release.
It separates the Android OS framework from the hardware-
specific vendor implementation so that vendors can more
easily update their devices to a new version of Android.
Ideally, an updated Android OS framework with bug fixes
and new features should run without any problem on the
vendor implementation. However, Project Treble is unlikely
to significantly reduce the vulnerability life cycle [16]: first,
almost all the Android devices are heavily customized (e.g.,
Samsung’s TouchWiz, Huawei’s EMUI, LG’s UX). Android
vendors still need to port these customizations to the new
release. Second, the new Android OS is still subject to lengthy
testing by the vendor and the carriers. Therefore, InstaGuard
is still valuable in quickly closing the vulnerability window.

Notes on RuleMaker: In our current design of RuleMaker, we
use hardcoded rules to translate GuardSpec into GuardRules.
We plan to optimize it by employing an automatic metric-
based rule selection tool, for example [36], to improve ef-
ficiency. When automatically synthesizing GuardRules from
GuardSpec, RuleMaker uses debug symbol information to
resolve source-code level references in GuardSpec. Although
the intended users of our system (e.g., device or OS vendors)
always have access to debug symbols, we note that InstaGuard
itself functions without symbol information and allows users
to manually generate GuardRule using pre-defined templates
if needed.

VIII. CONCLUSION

We present InstaGuard, a new approach to hot-patching that
allows instant patch deployment on Android platforms. Unlike
existing hot-patching techniques, which directly inject code
into vulnerable programs or their memory, InstaGuard enforces
easy-to-generate rules, called GuardRule, that are expressive
enough to mitigate a wide range of vulnerabilities. Moreover,
these rules are restrictive by design, preventing InstaGuard
from being abused to introduce unsafe behaviors to patched
programs. We also build RuleMaker, a GuardRule generation
tool that takes as input GuardSpec, a high-level vulnerability
description that developers or security analyst can quickly
compose solely based on a basic understanding of given
vulnerabilities. We collaborate with a major mobile device
vendor to evaluate and deploy InstaGuard. Our evaluation
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shows that InstaGuard is versatile enough to handle commonly
seen real-world vulnerabilities and incurs negligible overhead.
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APPENDIX

APPENDIX: GUARDSPEC EXAMPLES

A. CVE-2016-3895

This is a integer overflow vulnerability in libs/ui/Re-
gion.cpp in mediaserver on Android. The uint32_t variable
numRects * sizeof(Rect) in Region : flatten function can
be overflowed, which invalidates existing security checks. It
allows attackers to obtain sensitive information via a crafted
application.
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1 [common]
2 ID = CVE-2016-3895
3 binary_path = /system/bin/surfaceflinger
4 module_name = libui.so
5 decision = BLOCK
6
7 [integer overflow]
8 involved_vars = numRects,Rect
9 overflow_exp = numRects * Rect

10 overflow_dir = MAX
11 trigger_value = 0xffffffff
12 vul_location = frameworks/native/libs/ui/Region.cpp

| Region:flatten | 794,!

1

B. CVE-2016-3871

This is a buffer overflow vulnerability in codec-
s/mp3dec/SoftMP3.cpp in libstagefright of mediaserver on
Android. The SoftMP3::onQueueFilled function uses memset
to cleanup memory, but it can accept a large len value which
leads to heap overflow, it was fixed by adding additional
boundary check before calling memset. It allows attackers to
gain privileges via a crafted application.

1 [common]
2 ID = CVE-2016-3871
3 binary_path = /system/bin/mediaserver
4 module_name =libstagefright_soft_avcenc.so
5 decision = BLOCK
6
7 [buffer overflow]
8 buf_name = outHeader->pBuffer
9 buf_size = outHeader->nAllocLen

10 vul_location =
libstagefright/codecs/mp3dec/SoftMP3.cpp
|SoftMP3::internalGetParameter | 303

,!
,!

1

C. CVE-2016-0836

This is a out-of-bound access vulnerability in de-
coder/impeg2d_vld.c in mediaserver on Android. The in-
dex pi4_num_coeffs of buffer pi2_coeffs and pu1_pos within
impeg2d_vld_decode function can be increased beyond buffer
boundary, adding a boundary check within the while loop can
fix the problem. It allows remote attackers to execute arbitrary
code or cause a denial of service via a crafted media file.

1 [common]
2 ID = CVE-2016-0836
3 binary_path = /system/bin/mediaserver
4 module_name =libstagefright_soft_avcenc.so
5 decision = BLOCK
6
7 [out-of-bound access]
8 index_var = pi4_num_coeffs
9 buf_size_var = 64

10 vul_location =
external/libmpeg2/decoder/impeg2d_vld.c |
impeg2d_vld_decode | 696

,!
,!

1

D. CVE-2016-6707

This is a use-after-free vulnerability in graphics/Bitmap.cpp
in system server on Android. The memory region size of
munmap call within Bitmap :: doFreeP ixels function can
be controlled from user process, which results in unmapping
crucial regions of memory in the remote process. It allows an
attacker to replace the heap region of the remote process with
controlled data and eventually leads to privilege escalation.

1 [common]
2 ID = CVE-2016-6707
3 binary_path = /system/bin/app_process64
4 module_name = libandroid_runtime.so
5 decision = BLOCK
6
7 [use-after-free]
8 lexp = mPixelStorage.ashmem.size
9 rexp = VMA_SIZE(mPixelStorage.ashmem.address)

10 relation_op = NE
11 vul_location = core/jni/android/graphics/Bitmap.cpp

| Bitmap::doFreePixels | 186,!

1

E. CVE-2016-2417

This is a logic bug in media/libmedia/IOMX.cpp in medi-
aserver on Android. The params data structure in BnOMX ::
onTransact function is not properly initialized, which allow
an attacker to obtain sensitive information from process mem-
ory, and consequently bypass security measures in place.

1 [common]
2 ID = CVE-2016-2417
3 binary_path = /system/bin/mediaserver
4 module_name = libmedia.so
5 decision = AUDIT
6
7 [logic bug]
8 vul_location =

frameworks/av/media/libmedia/IOMX.cpp |
BnOMX::onTransact | 621

,!
,!

9 lexp = *param
10 rexp = 0
11 relation_op = NE

1
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