
PTrix: Efficient Hardware-Assisted Fuzzing for COTS Binary
Yaohui Chen*

Northeastern University
Dongliang Mu*

Penn State University
Jun Xu

Stevens Institute of Technology

Zhichuang Sun
Northeastern University

Wenbo Shen
Zhejiang University

Xinyu Xing
Penn State University

Long Lu
Northeastern University

Bing Mao
Nanjing University

ABSTRACT
Despite its effectiveness in uncovering software defects, American
Fuzzy Lop (AFL), one of the best grey-box fuzzers, is inefficient
when fuzz-testing source-unavailable programs. AFL’s binary-only
fuzzing mode, QEMU-AFL, is typically 2-5× slower than its source-
available fuzzing mode. The slowdown is largely caused by the
heavy dynamic instrumentation.

Recent fuzzing techniques use Intel Processor Tracing (PT), a
light-weight tracing feature supported by recent Intel CPUs, to re-
move the need of dynamic instrumentation. However, we found that
these PT-based fuzzing techniques are even slower than QEMU-AFL
when fuzzing real-world programs, making them less effective than
QEMU-AFL. This poor performance is caused by the slow extraction
of code coverage information from highly compressed PT traces.

In this work, we present the design and implementation of PTrix,
which fully unleashes the benefits of PT for fuzzing via three novel
techniques. First, PTrix introduces a scheme to highly parallel the
processing of PT trace and target program execution. Second, it
directly takes decoded PT trace as feedback for fuzzing, avoiding
the expensive reconstruction of code coverage information. Third,
PTrix maintains the new feedback with stronger feedback than
edge-based code coverage, which helps reach new code space and
defects that AFL may not.

We evaluated PTrix by comparing its performance with the state-
of-the-art fuzzers. Our results show that, given the same amount
of time, PTrix achieves a significantly higher fuzzing speed and
reaches into code regions missed by the other fuzzers. In addition,
PTrix identifies 35 new vulnerabilities in a set of previously well-
fuzzed binaries, showing its ability to complement existing fuzzers.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

*These two authors have contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIACCS ’19, July 07–12, 2019, Auckland, NZ
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

KEYWORDS
Fuzzing; Intel PT; Path-sensitive
ACM Reference Format:
Yaohui Chen*, Dongliang Mu*, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu
Xing, Long Lu, and Bing Mao. 2019. PTrix: Efficient Hardware-Assisted
Fuzzing for COTS Binary. InASIACCS ’19: ACMAsia Conference on Computer
and Communications Security, July 07–12, 2019, Auckland, New Zeland..ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Fuzz-testing, or fuzzing, is an automated software testing technique
for unveiling various kinds of bugs in software. Generally, it pro-
vides invalid or randomized inputs to programs with the goal of
discovering unhandled exceptions and crashes. This easy-to-use
technique has now become the de facto standard in the software
industry for robustness testing and security vulnerability discovery.

Among all the fuzzing tools, American Fuzzy Lop (AFL) requires
essentially no a-priori knowledge to use and can handle com-
plex, real-world software [22]. Therefore, AFL and its extensions
have been widely adopted in practice, constantly discovering un-
known vulnerabilities in popular software packages (such as nginx,
OpenSSL, and PHP).

A major limitation of AFL is its low speed in fuzzing source-
unavailable software. Given a commercial off-the-shelf (COTS)
binary, AFL needs to perform a black box on-the-fly instrumen-
tation using a customized version of QEMU running in the “user
space emulation” mode. Despite the optimizations [9], QEMU still
incurs substantial overhead in this mode and thus slows down AFL’s
binary-only fuzzing. According to the AFLwhite paper [3], AFL gets
decelerated by 2 - 5× in this QEMU-based mode, which is significant
enough to make AFL much less used for binary-only fuzzing.

Previous research primarily focused on improving AFL’s code
coverage so that it could potentially find more bugs. To the best
of our knowledge, only a few works aimed to improve the efficien-
cy/speed of AFL [5, 29, 37]. Since quickly identifying software flaws
can expedite patches and narrow exploit windows of vulnerabilities,
the goal of this work is to improve AFL’s efficiency at uncovering
bugs in COTS binaries.

Unlike the prior work that achieves efficiency improvement
through syscall re-engineering [37], we propose a new fuzzing
mechanism utilizing a recent hardware tracing feature, namely
Intel PT [1], to enhance the performance of binary-only fuzzing.
We design and develop PTrix, an efficient hardware-assisted fuzzing
tool. The intuition of using PT to accelerate fuzzing is as follows.
The success of AFL is largely attributable to the use of code coverage

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ASIACCS ’19, July 07–12, 2019, Auckland, NZ Chen, et al.

as feedback. To obtain code coverage information, AFL traces the
program execution with QEMU, which incurs significant overhead.
Alternatively, Intel PT can trace program execution on the fly with
negligible overhead. By replacing QEMU with lightweight hardware
tracing, we can improve the efficiency for binary-only fuzzing.

Intel PT stores a program execution trace in the form of com-
pressed binary packets. To implement PTrix, an instinctive reac-
tion [29] is to sequentially trace the program execution, decode
the binary packets, and translate them into code coverage that AFL
needs as feedback. We refer to this implementation as Edge-PT.
However, as we demonstrate in Section 5, Edge-PT introduces sig-
nificant run-time overhead to fuzzing and does not actually benefit
binary-only fuzzing with efficiency improvement. This is due to the
fact that binary packet decoding and code translation both incur
high computation cost.

To address the above issue, we first introduce a parallel, elas-
tic scheme to parse a PT trace. This scheme mounts a concurrent
thread to process the execution trace in parallel with the target
program execution. Due to a hardware restriction, the boundary of
the execution trace can only be updated when PT is paused. This
frequently defers the parsing thread until the next boundary up-
date which may arrive after termination of the target program. To
overcome this limitation, our scheme leverages an elastic approach
to automatically adjust the time window of target program execu-
tion (as well as PT tracing). Our approach ensures that the trace
boundary gets safely and timely updated and the parsing thread
are used efficiently.

Despite the above parallel scheme, we still observe that the pars-
ing thread frequently and dramatically falls behind the program
execution. The major cause is the aforementioned high cost of code
coverage reconstruction. To this end, we replace the code-coverage
feedback used by AFL with a newly invented PT-friendly feedback
mechanism. Our mechanism directly encodes the stream of PT
packets as feedback. This makes PTrix no longer need to perform
code coverage reconstruction, which ultimately enables the parsing
thread to accomplish its job almost at the same time as the target
program finishes executing on the fuzzing input. Facilitated by
these new designs, PTrix executes 4.27x faster than AFL running
in QEMU mode.

Functionality wise, our new feedback does not reduce the guid-
ance that code coverage can provide. In essence, the stream of PT
packets keeps track of the execution paths, which carries not only
information about code coverage but also orders and combinations
among code block transitions. This means our new feedback is
inclusive of that used by AFL. As we demonstrate in Section 5, our
feedback allows PTrix to cover code space quicker, explore code
chunks that would otherwise have not been touched, and follow
through long code paths to unveil deeply hidden bugs. By the time
of writing, PTrix has identified 35 previously unknown security
defects in well-fuzzed programs.

We note that this work is not the first that applies Intel PT
to fuzz testing [5, 8, 29]. To the best of our knowledge, PTrix,
however, is the first work that explores Intel PT to accelerate fuzzing.
Going beyond the higher efficiency it brings, PTrix also exhibits
better fuzzing effectiveness and new ability to find unknown bugs.
While our prototype of PTrix is built upon Linux on x86 platform,
our design can be generally applied to other operating systems

seed pool

global bitmap

local bitmap

Y

mutate① seed fork server fork

local bitmap

entry:
③ bb0: routine

…

② input

④
update⑥

cm
p

⑤ exit

shared

(a) Fuzzer (b) Target Program

copy

Figure 1: The workflow of the fuzzer residing in AFL.

across various architectures which also support hardware-assisted
execution tracing.

In summary, this paper makes the following contributions.
• We explored Intel PT and utilized it to design an efficient
hardware-assisted fuzzing mechanism to improve efficiency
and effectiveness for binary-only fuzzing.
• We prototyped our proposed fuzzing mechanism with PTrix
on Linux and compared it with other fuzzing techniques,
demonstrating it can accelerate a binary-only fuzzing task
for about 4.27×.
• We devised a rigorous evaluation scheme and showed: (i)
Intuitively applying PT does not produce an efficient binary-
compatible fuzzer; (ii) PTrix not only improves fuzzing effi-
ciency but also has the potential to explore deeper program
behaviors. As of the preparation of this paper, PTrix has
identified 35 unknown software bugs, 11 of them have CVE
IDs assigned.

2 BACKGROUND
Recall that we build PTrix on top of AFL through Intel PT with the
goal of improving efficiency and effectiveness for fuzzing. In this
section, we describe the background of AFL and that of Intel PT.

2.1 American Fuzzy Lop
AFL consists of two main components – an instrumentor and a
fuzzer. Given a target program, the instrumentor performs program
instrumentation by assigning an ID to each basic block (BB) and
inserting a routine at the entry site of that BB. With the routine
along with the ID tied to each BB, the fuzzer follows the workflow
below to interact with the target program and perform continuous
fuzz testing.

As is illustrated in Figure 1, the fuzzer starts a fuzzing round by
scheduling a seed from the pool (1○). It then mutates this seed via
approaches such as bit-flip to produce new test cases. Using each of
these test cases as input, the fuzzer launches the target program (2○).
With the facilitation of the routine instrumented, the target program
computes hit counts pertaining to the edge indicated by each pair
of consecutively executed BBs (3○) and stores this information to a
local bitmap (4○). As depicted in Figure 1, the local bitmap is in a
memory region shared by the target program and the fuzzer.

As is shown in the figure, when the execution of the target
program is terminated (5○), the fuzzer measures the quality of the
input by comparing the information held in the local bitmap with
that in the global one (6○). To be more specific, it examines whether

PTrix: Efficient Hardware-Assisted Fuzzing for COTS Binary ASIACCS ’19, July 07–12, 2019, Auckland, NZ

0x400629: push %rbp
...
0x400639: sysenter
0x400641: mov %eax, %ebx
...
0x40067a: cmp $0x1, %eax
0x40067d: je 0x400692
0x400692: movq $0x00, -0x8(%rbp)
...
0x4006b6: callq *%rax
0x4005e4: push %rbp
...
0x400607: retq
0x4006b8: leaveq

(a) Instruction Trace

TIP 0x400629
...
TIP.PGD no ip
TIP.PGE 0x400641
...
...
TNT 1
...
...
TIP 0x4005e4
...
...
TIP 0x4006b8
...

(b) PT Trace

Figure 2: Example of trace generated by PT (with kernel trac-
ing disabled). The left part shows the instruction sequence
and the right part presents the corresponding PT trace.

there exists new coverage that has not yet been observed in the
global bitmap. By new coverage, it means the edges or the hit counts
tied to the edges that have not yet been observed in previous fuzzing
rounds. For the new coverages identified, the fuzzer includes them
into the global bitmap and then appends the corresponding input to
The fuzzer would then select a new seed for the consecutive rounds
of fuzz testing.

To improve the efficiency, as is illustrated in Figure 1, AFL also
introduces a fork server mode [4], where the target program goes
through execve() syscall and the linking process and then turns to
a fork server. Then for each round of fuzz testing, the fuzzer clones
a new target process from the copy-on-write fork server that is
perpetually kept in a virgin state. With this design, AFL could avoid
the overhead incurred by heavy and duplicate execution prefix, and
thus significantly expedite the fuzzing process.

The aforementioned description indicates how AFL works on
source-available programs. In the situation where source code is
unavailable, the aforementioned technique, however, cannot be
directly applied to a target program because binary instrumenta-
tion could potentially introduce unexpected errors. To address this
issue, AFL performs dynamic instrumentation using the user-mode
emulator of QEMU. Technically, this design does not vary the fuzzer
component residing in AFL. As a result, a binary-only fuzzing pro-
cess still follows the workflow depicted in Figure 1. More details
could be referred to at [3].

2.2 Intel Processor Tracing
Intel PT is a low-overhead hardware feature available in recent Intel
processors (e.g., Skylake series). It works by capturing information
pertaining to software execution. Tominimize the storage cost, Intel
PT organizes the information captured in different forms of data
packets. Of all the data packets, Taken Not-Taken (TNT) and Target
IP (TIP) packets are the ones most commonly adopted. Technically
speaking, TNT packets take the responsibility of recording the
selection of conditional branches, whereas TIP packets are used for
tracking down indirect branches and function returns. Along with
some other packets such as Packet Generation Enable (PGE) and
Packet Generation Disable (PGD), Intel PT also utilizes TIP packets
to trace exceptions, interrupts and other events.

seed pool

global bitmap

local bitmap

Y

mutate① seed fork server fork

entry:
⑤ bb0: routine

…
…
…

② input

⑪
cm
p

(a) Fuzzer (c) Target Program

⑫ copy

local bitmap

PT Buffer
(b) Proxy

PT Bufferm
ap
pe
d

⑦ parse

scheduler
③ scheduling ④ input

Kernel Module

⑨ sync

⑧ exit⑩ exit

⑥
pa
rs
e

shared

Figure 3: System architecture and workflow of PTrix. The
Fuzzer, Proxy, and Target Program are separate processes in
the user space. The KernelModule is a driver running inside
the kernel space. Components in orange color are newly in-
troduced by PTrix.

Using the packet trace captured by Intel PT along with the corre-
sponding target program in the binary form, a software developer
or a security analyst could fully and perfectly reconstruct the in-
struction trace pertaining to the execution of the target program.
To demonstrate this, we depict the packet trace as well as the target
program in disassembly side by side in Figure 2. As we can observe
from the figure, Intel PT records the address of the entry point with
TIP packet TIP 0x400629 and then the conditional jump with a
TNT packet indicated by TNT 1. Following these two packets, Intel
PT also encloses packets TIP 0x4005e4 and TIP 0x4006b8 in the
packet trace. Using the first two packets shown in the trace, we
can easily infer that the program enters its execution at the site
0x400629 and then takes the true branch redirecting the execution
from the site 0x40067d to the site 0x400692. As is indicated by con-
secutive packets TIP 0x4005e4 and TIP 0x4006b8, we can further
conclude that the target program invokes a subroutine located at
the site 0x4005e4 and then returns to the site 0x4006b8.

3 DESIGN
3.1 Overview
As is depicted in Figure 3, PTrix shares with conventional AFL
the same architecture except for a PT module as well as a proxy
sitting between the fuzzer and the target program. Within this new
fuzzing system, the proxy component takes the responsibility of
coordinating fuzz testing, and the PT module is used for supporting
the parallel and elastic parsing of Intel PT trace packets. In the fol-
lowing, we briefly describe how each component coordinates with
each other at the high level. Note that a more detailed description
of the workflow will be provided in Section 3.2.

Similar to AFL, PTrix starts with generating an input for the
target program (1○ 2○). Instead of passing the input directly to
the program or more precisely the embedded fork server, PTrix
however sends it through the proxy component which leverages a
scheduler to coordinate fuzz testing (3○ 4○).

With the facilitation of Intel PT, PTrix uses a PT module to
monitor the execution of the target program and store the trace
packets in a pre-allocated buffer shared between kernel and user
space (6○). Carried on simultaneously with the execution of the
target program, the proxy parses the PT trace, computes feedback
and updates the local bitmap accordingly (7○).

ASIACCS ’19, July 07–12, 2019, Auckland, NZ Chen, et al.

A single fuzzing run
Ptrix

Fuzzer

Proxy

Target
Program

PT
Module

1 2

3

5 8

7 9 10

11 12

4

6

input

schedule

 execute

 trace

 parse

 finalize

Figure 4: Timeline of one fuzzing round in PTrix. Note that
the intervals depicted in dotted lines are those we aim to in-
troduce performance optimization, and the circled numbers
correspond to those shown in Figure 3.

At the time of the termination of fuzz testing, the proxy receives
a notification (8○). To enforce correct synchronization between
consecutive rounds of fuzz testing, the scheduler of the proxy does
not pass the notification back to the fuzzer until it confirms the
completion of packet parsing (9○ 10○).

On the fuzzer side, right after receiving the fuzzing completion
notification from the proxy, it follows the same procedure as AFL
to conclude one round of fuzz testing, i.e., comparing the local
and global bitmaps and, if necessary, appending the input into the
queue for the consecutive rounds of fuzz testing (11○ 12○). It should
be noted that, throughout the fuzzing process described above, the
key characteristic of PTrix is to compute path coverage using PT
trace. As is mentioned earlier in Section 1, this could significantly
reduce the overhead introduced by instruction trace reconstruction.
In Section 3.3, we will elaborate on our design of PTrix to enable
this practice.

3.2 Workflow Detail
Now, we specify the workflow details that have not yet been dis-
cussed above.

3.2.1 Initializing Fuzz Testing Workflow. First, PTrix mounts the
PT module and sets it to listen to a netlink channel. Second, PTrix
starts the fuzzer component, which forks a child process running
as the proxy seating between the fuzzer and the target program. By
passing the information pertaining to a fuzzing task to the proxy,
PTrix triggers the proxy to send a notification to the PT module
through the established netlink channel.

On receiving the above notification, the PT module allocates
a buffer for storing PT data packets. In addition, it instantiates a
variable pt_off and uses it to indicate the offset of the buffer, from
which to the head of the buffer is the space where the data packets
are stored. In this work, we design PTrix to map the buffer and
the variable into the user-space of the proxy process. In this way,
we can ensure that the proxy process can retrieve data packets
without crossing the user-kernel privilege boundary, making the
performance overhead minimal.

After the PT module initialization, the proxy receives a confirma-
tion and further performs the following operations. First, it forks a
child process running as the fork server. Second, the proxy process
notices the fuzzer to generate an input and passes it to the fork
server to start execution.

3.2.2 Enforcing the Correctness of the Workflow. With the comple-
tion of the initialization above, PTrix can perform fuzz testing by
following the workflow specified in Section 3.1. However, a sim-
ple design of this workflow could potentially incur an incorrect
synchronization issue, particularly given the situation where the
fuzzer, proxy, PT module and fork server components all run con-
currently. To ensure the correctness of fuzz testing, we augment
PTrix with three callbacks planted into the tracepoints inside three
kernel events – fork, context_switch, and exit. Note that we
use the tracepoints instead of explicit interactions (such as system
calls) to avoid additional communication costs. In the following,
we specify the functionality of each of these callbacks.
Fork callback. PTrix uses PT module to monitor the process of
a target program (for brevity target process) and the proxy com-
ponent to coordinate the entire fuzzing test. To facilitate this, we
introduce a fork callback. On the one hand, when the fork server
forks the target process 1, this callback registers the target process
to the proxy and makes the PT module ready for tracing. As such,
we can ensure that the target process does not execute until the
proxy is ready and the PT module is set up. On the other hands,
this callback captures child threads forked by the target process,
prepares these threads with the aforementioned initialization we
perform to the target process, and ensures the synchronization
before these threads start. By doing so, PTrix can handle multi-
threading programs.
Context_switch callback. When the target process enters execu-
tion status, the CPU might switch it in and out periodically and a
context_switch event would occur. In the context_switch, we
introduce a callback for two reasons. First, we design the callback
to enable Intel PT to trace a CPU core whenever the target pro-
cess switches into it, and disable the tracing at the time when the
target process is switched out. In addition, this callback updates
pt_off when the target process is switched out. In this way, we
guarantee that PT always writes to the right place. Second, as PT
cannot separate the traces from different threads, we use this call-
back to distinguish the target process and its child threads. More
specifically, this callback sets up PT to write in the buffer associ-
ated with a thread when this thread is switched in and updates the
corresponding pt_off when this thread is switched out.
Exit callback. After the target process terminates, an exit event
would occur. To use it as a signal for concluding one round of fuzz
testing, we introduce a callback in exit. This callback is responsible
for coordination among the fuzzer, PT module and proxy compo-
nents. To be specific, whenever the callback is triggered, PTrix first
disables Intel PT. Then, it examines whether the data packets have
been processed completely. Only with the confirmation of data
packet processing completion, PTrix further resets the PT module,
coordinates with the fuzzer to compare the bookkeeping bitmaps
and thus concludes one round of fuzzing testing. With this callback,
we can ensure that the fuzzer does not conclude fuzz testing prior
to the packet parsing and local bitmap computation.

3.3 Efficiency Improvement
To illustrate the coordination and synchronization enforced through
the aforementioned callbacks, we present the chronological order

1More precisely, the target process means the master thread

PTrix: Efficient Hardware-Assisted Fuzzing for COTS Binary ASIACCS ’19, July 07–12, 2019, Auckland, NZ

of each component in Figure 4. As we can observe from the figure,
parsing data packets and computing local bitmaps sit on the critical
path of each round of fuzz testing. If these operations start after the
termination of the target process, or launch nearly simultaneously
with the target process but take a significant amount of time to
complete, the fuzzing efficiency would be significantly jeopardized
and these operations would become the performance bottleneck
for PTrix. To avoid these situations and improve performance,
we propose a parallel and elastic PT parsing scheme and a new
PT-friendly feedback.

3.3.1 Parallel and Elastic PT Parsing. As is mentioned above, it
obviously increases the time needed for a single round of fuzz
testing if PTrix parses data packets right after the termination of a
target process. As a result, we carefully design the following scheme
to perform data packet decoding simultaneously with the target
process execution.

After starting a target process, the proxy process creates a parser
thread to decode the data packets recorded through Intel PT. De-
pending upon how fast the data packets are yielded, the parser
thread adjusts its working status. For example, if the parser ex-
hausts the packets quicker than they are recorded, it would enter
an idle state until new data packets become available. In the process
of parsing data packets, we design PTrix to maintain a variable
last_off, indicating the ending position where the parser thread
completes packet decoding last time. With this variable, the parser
could easily pinpoint the offset from which it could retrieve the
data packets while it is awakened from an ideal state.

In our design, PTrix initializes the last_off variable with zero.
Every time when last_off is less than pt_off – the variable indi-
cating the end of the buffer that stores data packets – the parser
thread could decode data packets and update last_off accord-
ingly. With this, we can ensure that the parser can always correctly
identify the packets that have not yet been decoded and, more im-
portantly, guarantee that the parser does not retrieve data packets
out of the boundary. In addition, with the facilitation from the exit
callback, PTrix can ensure all data packets are processed behind the
termination of the target process. It should be noted that we design
PTrix to maintain these variables on the basis of each individual
thread for the simple reason that this could allow PTrix to handle
multi-threading.

While the aforementioned design is intuitive, it is still challeng-
ing to follow the design and perform data parsing simultaneously
with the execution of a target program. The reason is that, in order
to perform data packet decoding and execute the target process in
parallel, we have to design PTrix to update the variable pt_off
significantly frequently. However, due to the limitation imposed
by hardware, we can update the variable pt_off only at the time
when a CPU core switches out the target process. This is simply
because a correct offset can be reliably obtained only when PT trac-
ing is disabled. In practice, our observation, however, indicates that
context switch does not frequently occur and, oftentimes, a target
process completes one round of fuzz testing without experiencing
context switch. As a result, it is infeasible to perform simultaneous
data packet parsing without disrupting the execution of the target
program.

Algorithm 1 Bit map updating algorithm
INPUT:

trace_bits[] - The bit map
packet_queue - The queue of PT packets

OUTPUT:
Updated trace_bits[]

1: procedure UpdateTracebits
2: bit_hash = 0
3: t ip_cnt = 0
4: tnt_cnt = 0
5: while packet_queue .size() do
6: packet = packet_queue .pop()
7: if packet .type == TIP then
8: bit_hash =UpdateHash(bit_hash, packet)
9: t ip_cnt++
10: tnt_cnt = 0
11: if t ip_cnt ≥ MAX_TIP then
12: index = Encodinд(bit_hash)
13: setbit (trace_bits, index)
14: t ip_cnt = 0
15: bit_hash =UpdateHash(0, packet) ▷ Start a new slice
16: end if
17: end if
18: if packet .type == TNT && tnt_cnt ≤ MAX_TNT then
19: bit_hash =UpdateHash(bit_hash, packet)
20: tnt_cnt++
21: end if
22: end while
23: end procedure

To address the challenge above, we introduce an elastic scheme,
which leverages a timer mechanism provided by kernel to adjust
the frequency of disabling process tracing in an automated fashion.
To be more specific, we first attach a timer to a CPU core that ties
to a target process. Then, we register a handler to that timer. With
this, process tracing can be enabled or disabled, and the variable
pt_off can be updated. For example, whenever the timer alarm is
triggered, the handler could disable the tracing, update pt_off and
set up the timer to arm for the next shot.

To determine the countdown for the next alarm, we measure
the length of the data packets by retrieving the value held in the
variable pt_off. Then, we compare it with the variable pt_last,
indicating the length of the data packets that have been correctly
decoded by the parser thread. Since the value difference in these
variables demonstrates the amount of data packets that have not
yet been parsed, which reflects the speed of the parser thread in
decoding the packets. We set up the next timer alarm in an elastic
manner based on the following criteria. If the amount of the data
packets left behind exceeds a certain threshold, PTrix decreases the
countdown so that parser’s workload will be reduced. Otherwise,
the countdown is incremented and thus ensuring that parser has
sufficient packets to perform decoding. In Section 5, we demonstrate
the efficiency gain obtained from this elastic scheme by comparing
it with a naive scheme in which the parsing process starts after the
execution termination of the target process.

3.3.2 New PT-friendly Feedback Scheme. As is mentioned earlier, if
parsing data packets incurs significant latency, the improvement in
fuzzing efficiency obtained from the aforementioned parallel pars-
ing scheme would become a futile attempt. Therefore, in addition to
taking advantage of parallelization for improving the efficiency of
fuzz testing, we need an efficient approach to decode data packets
and thus expedite each round of fuzz testing.

Intuitively, we can perform data packet decoding by following
the footprints of previous works [8, 29], in which fuzzing tools are
designed to reconstruct instructions executed – using the technique

ASIACCS ’19, July 07–12, 2019, Auckland, NZ Chen, et al.

Algorithm 2 Encoding algorithm
INPUT:

bit_hash - A 64 bit hash value to encode
OUTPUT:

index - Result of the encoding
1: procedure Encoding
2: bit_size = bit_map .size << 3 ▷ Number of bits in bit_map
3: ranдe = U64_MAX >> (64 - log2(bit_size))
4: rnd = 64 / bit_size
5: index = bit_hash & ranдe
6: for k ← 0 to rnd do
7: bit_hash = bit_hash >> bit_size
8: index ⊕ = bit_hash & ranдe
9: end for
10: return index & ranдe
11: end procedure

discussed in Section 2 – and then compute the bitmaps by follow-
ing the bitmap update algorithm introduced by AFL. However, as
we demonstrated in Section 5, using such an approach, dubbed
Edge-PT, as part of our fuzzing system does not actually introduce
any efficiency improvement. This is simply because recovering in-
structions from data packets incurs a significant amount of latency
even when we cache the disassembling results.

To address this issue, we introduce a new scheme to compute
and update bitmaps needed for fuzz testing. At the high level, we
concatenate the TIP and TNT packets into “strings” and then hash
those strings into indices for bitmap updating. We describe the
details of our algorithm as follows.

The overall algorithm is presented in Algorithm 1. As fuzzing
continues, the UPDATETRACEBITS procedure consumes the TIP and
TNT packets produced by our decoder. Note that for better effi-
ciency, single-bit TNTs are concatenated into byte-aligned packets.
In UPDATETRACEBITS, each packet is taken by the UpdateHash rou-
tine to update a hash value. UpdateHash implements the SDBM
hash function which supports streaming data [30]. We selected
SDBM because it has been demonstrating great over-all distribution
for various data sets [19] and it has low computation complexity.

When UPDATETRACEBITS sees MAX_TIP TIP packets, it encodes
the accumulated hash value as an index to update the bitmap. This
essentially cuts the packets stream into slices and record each slice
with a bit. Shortly we will explain the rationale behind this design
and how we determine MAX_TIP. Encoding of the hash value is
achieved using Algorithm 2. It transforms a 64-bit hash to a value in
[0,max_bit_index), wheremax_bit_index represents the number
of bits in the bitmap. To be more specific, this encoding splits the
hash value into multiple pieces with each piece converged into
[0,max_bit_index). Then it exclusively-ors these pieces to form
the index. Given a set of equally distributed hash values, Algo-
rithm 2 will ensure that they are mapped into [0,max_bit_index)
with uniform distribution.

In this design, we only spare one bit to record the appearance
of a slice. This differs from the design of AFL — AFL uses one byte
to log not only the appearance of an edge but also its hit count.
Our design is motivated by the observation that most of the slices
(under the MAX_TIP we select) only arise once, which only require
single bits for recording. As a result, our scheme uses 7x less space
than the hit-count-recording scheme in AFL. This, in turn, enables
bit_map to better reside in L1 cache. As we will show in Section 5,
this choice brings around an additional 8% speed up.

1 char src[SIZE];
2 char dst[SIZE] = {0};
3 char target[]="aaaabbbb";
4 int i;
5 for(i = 0; i < SIZE; i++){
6 if(src[i] == ’a’){
7 dst[i] = src[i];
8 continue;
9 }

10 if(src[i] == ’b’){
11 dst[i] = src[i];
12 continue;
13 }
14 break;
15 }
16 if(!strncmp(dst, target, SIZE)){
17 bug(); // Buggy function
18 }

1 STATIC regnode *
2 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren,

I32 *flagp,U32 depth),!
3 {
4 char *start_verb = RExC_parse + 1;
5 if (paren) {
6 switch (*start_verb) {
7 case ’(’: {
8 if (/*some sanity checks*/){
9 I32 flag;

10 ...
11 tail = S_reg(pRExC_state, 1, &flag,

depth+1);,!
12 ...
13 goto insert_if;
14 }
15 }
16 }
17 }

1 name = chunk_name // chunk_name is input
2
3 for (i=1; i<=4; ++i)
4 {
5 int c = name & 0xff;
6 if (c < 65 || c > 122 || (c > 90 && c < 97)){
7 png_chunk_error("invalid chunk type");
8 long_jmp() // jump to error handler and exit
9 }

10 name >>= 8;
11 }
12
13 /* execution after finishing loop */
14 if(condition1(chunk_name))
15 handler1();
16 ...
17 if(conditionX(chunk_name))
18 handlerX();
19 ...
20 if(conditionN(chunk_name))
21 handlerN();

1

(a) A code fragment in libpng-1.6.31. PTrix can generate
inputs to reach handlerX while AFL could not.

i < = 4

c < 65

T : [E1]

handler()

F : [E2]

error_exit

T : [E3]

c > 122

F : [E4]

T : [E5]

c > 90

F : [E6]

c < 97

T : [E7]

F : [E8]

T : [E9]

F : [E10]

(b) Control flow graph of the code shown above. On an edge,
“T/F”means true/false and “[EX]” is the number of the edge.

Figure 5: An example for new code coverage by PTrix

The above algorithm avoids the expensive re-construction of
instruction trace. As we will shortly show in Section 5, it brings us
over 10x acceleration on execution speed. Essentially, this algorithm
alters AFL’s code-coverage based feedback in AFL to “control-flow”
based feedback. In the following, we discuss how our design main-
tains the functionality and gains the efficiency.

Functionality wise, our new feedback provides guidance that is
inclusive of code coverage (the feedback natively used by AFL). The
guidance requires that the feedback to diverge when inputs incur
different execution behaviors. The feedback to guide AFL captures
new code edges and their new hitting counts. Going beyond AFL,
our feedback acutally approaches a higher level of guidance — path
guidance. More specifically, our feedback encodes the control flow
packets, which uniquely represents an execution path. Following
inputs that lead to different execution paths, our feedback produces
different outputs. Therefore, it captures not only new code edges
and new hitting counts of code edges, but also new orders and new
combinations among code edges, since all the four events result in
new execution paths.

Efficiency wide, our new feedback may encounter two caveats
when mounted for fuzzing. In the following, we introduce their
details and explain our solutions.

First, we need a giant bitmap to record the tremendous volume of
distinct execution paths. This greatly impacts the frequent bitmap

PTrix: Efficient Hardware-Assisted Fuzzing for COTS Binary ASIACCS ’19, July 07–12, 2019, Auckland, NZ

updating and comparison, mainly because of a reduced cache hit
ratio and increased comparing operations. To mitigate this, we split
an entire path into slices aligned by MAX_TIP TIPs. The rationale
behind is that a smaller MAX_TIP reduces the size of a slice, which
consequently shrinks the permutation space of slices and the needed
bitmap. However, intuition suggests that decreasing MAX_TIP will
also reduce the path guidance. To better balance the efficiency and
guidance, we pick MAX_TIP following two criteria: (1) PTrixworks
with a 64KB bitmap 2 — We confirm this if the bitmap increases no
faster than 30% per 24 hours; (2) PTrix achieves an equivalent (if
not better) guidance than AFL — We confirm this if PTrix rarely
runs into collisions using a corpus of seeds generated by AFL in 24
hours.

Second, our new feedback may cause PTrix to overly explore or
even get trapped in localized code segments (in particular loops),
which slows down or impedes PTrix to explore new code. We in-
vest two-fold efforts in addressing this issue. At first, we restrict
the number of TNTs between two TIPs (line 18 in Algorithm 1) and
we call this approach descending path guidance. Our reason is that
extremely long TNT sequences are typically due to massive itera-
tions in loops. Limiting the number of TNTs can effectively prevent
PTrix from trapping into deep loops. Note that determination of
MAX_TNT is explained in Section 4. In addition, we adjust the
fuzzing scheduling in PTrix to prefer seeds producing small TNT
sequences. As we will show in Section 5, the two ideas well avoid
over-exploration of localized code and enable PTrix to achieve high
fuzzing efficiency.

3.4 Side Benefits of New Feedback Scheme
Our testing with PTrix on benchmark programs illustrates that the
newly designed feedback truly has stronger guidance which brings
side benefits to fuzzing.
Better code coverage. Recall that our feedback has the advantage
of capturing the orders and combinations of traversed code edges.
This property benefits PTrix in covering code that AFL is unable
to reach. Figure 5a showcases such an example in libpng-1.6.31.
The code verifies a 4-byte field chunk_name in the image header
through a loop (line 3 - 11). Any one of the four bytes violating the
checks (line 6) will break the loop and result in an early exit (line 8).
A valid chunk_name, will be processed by a handler corresponding
to its type (line 14 - 21).

In the fuzz testing, AFL generated inputs whose first byte violated
the three checks in different ways (line 7). These inputs followed
different execution paths (as shown in Figure 5b), including {E1
→ E3}, {E1 → E4 → E5}, {E1 → E4 → E6 → E7 → E9}.
By further mutating those inputs, AFL produced test cases which
chronologically explored the following paths: {E1 → E4 → E6 →
E8 → E1 → E3}, {E1 → E4 → E6 → E8 → E1 → E4 → E6 →
E8 → E1 → E3} and {E1 → E4 → E6 → E8 → E1 → E4 →
E5}. As the third test case led to neither new edge nor new hitting
count, it was ignored by AFL. But in fact, permutating this input
would result in a valid chunk_name, which matches conditionX
and makes handlerX executed. Different from AFL, PTrix values
this discarded input since it triggered new combinations of code
edges, which enables PTrix to ultimately reach conditionX.

2The 64KB bitmap is used in AFL by default

1 char src[SIZE];
2 char dst[SIZE] = {0};
3 char target[]="aaaabbbb";
4 int i;
5 for(i = 0; i < SIZE; i++){
6 if(src[i] == ’a’){
7 dst[i] = src[i];
8 continue;
9 }

10 if(src[i] == ’b’){
11 dst[i] = src[i];
12 continue;
13 }
14 break;
15 }
16 if(!strncmp(dst, target, SIZE)){
17 bug(); // Buggy function
18 }

1 STATIC regnode *
2 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren,

I32 *flagp,U32 depth),!
3 {
4 char *start_verb = RExC_parse + 1;
5 if (paren) {
6 switch (*start_verb) {
7 case ’(’: {
8 if (/*some sanity checks*/){
9 I32 flag;

10 ...
11 tail = S_reg(pRExC_state, 1, &flag,

depth+1);,!
12 ...
13 goto insert_if;
14 }
15 }
16 }
17 }

1 name = chunk_name // chunk_name is input
2
3 for (i=1; i<=4; ++i)
4 {
5 int c = name & 0xff;
6 if (c < 65 || c > 122 || (c > 90 && c < 97)){
7 png_chunk_error("invalid chunk type");
8 long_jmp() // jump to error handler and exit
9 }

10 name >>= 8;
11 }
12
13 /* execution after finishing loop */
14 if(condition1(chunk_name))
15 handler1();
16 ...
17 if(conditionX(chunk_name))
18 handlerX();
19 ...
20 if(conditionN(chunk_name))
21 handlerN();

1

Figure 6: A stack exhaustion bug in Perl.

Uncover deep bugs. As our new feedback provides additional
guidance, PTrix explores code segments more comprehensively,
leading to coverage of deeper execution space. This helps the discov-
ery of not only new code space but also deeper defects. In Figure 6,
we demonstrate such a case PTrix identified in perl-5.26.1. With
an input containing over 3500 “(”, one can trigger a stack exhaus-
tion error. Specifically, each of those “(” would trigger a recursive
call to function S_reg at line 11, which gradually exhausted the
stack region.

AFL records the feedback pertaining to an edge with a single
byte, which may log at most 255 hits. As such, AFL ignores inputs
that invokes more than 255 recursions. This prevents AFL from
mutating those inputs towards chasing down the bug. While in
PTrix, deeper recursions produce new TNT sequences, which is
captured by the new feedback.

4 IMPLEMENTATION
We implemented PTrix on 64-bit Ubuntu 14.04-LTS and released
our prototype implementation at https://github.com/junxzm1990/
afl-pt. We tested PTrix on a set of machines armed with various
Intel processors, including Core i7-6770HQ, Core i7-6700K Skylake-
H series and Core i5-7260U Kaby Lake series. In the following, we
highlight the important implementation details.
Fuzzer. To provide PTrix with better usability, we integrate the
main fuzzing logic of PTrix into the fuzzer of AFL (afl-fuzz). In
this way, a user of PTrix only needs to specify a flag (-P) along
with other options that are identical to those defined by AFL.
Proxy. Recall that one of the major tasks for the proxy is to parse
PT packets. To obtain the optimal performance in terms of parsing
efficiency, we implement the packet parser by porting the decoder
of Griffin [16]. We trim the decoder by removing the control flow
reconstruction steps and add supports for our elastic decoding. Our
new decoder contains less than 300 lines of code. As is described in
Section 3.3, the proxy component of PTrix sets up a threshold to
restrict the number of TNT packets in a sub-trace. To determine this
threshold, we also implement a subroutine for the proxy component,
which utilizes angr [32] – a binary analysis tool – to count the
number of basic blocks in a target program and then deems that
number as the value of the threshold. The reason behind this is that
we observed the number of TNT packets is proportionate to the
size of the traced program.
PT Module.We developed the PT module as a separate loadable
kernel module (LKM). At the high level, the module manages Intel

https://github.com/junxzm1990/afl-pt
https://github.com/junxzm1990/afl-pt

ASIACCS ’19, July 07–12, 2019, Auckland, NZ Chen, et al.

Program Settings
Name Version Driver Seeds Options
libpng 1.6.31 readpng supplied by AFL empty
libjpeg jpeg-9b djpeg supplied by AFL “-gif”
libxml 2.29 xmllint supplied by AFL empty
c++filt 2.29 cxxfilt empty byte empty
nm 2.29 nm-new supplied by AFL empty
objdump 2.29 objdump supplied by AFL “-D”
exif+libexif 0.6.21 exif [2] empty
perl 5.26.1 perl [21] empty
mupdf 1.11 mutool supplied by AFL “show”

Table 1: Evaluation settings

PT and communicates with the proxy component. Technically, we
implement the module to enable PT to run in the Table of Physical
Addresses (ToPA) mode. In this mode, Intel PT can store the tracing
packets in multiple discontinuous physical memory areas. For flex-
ibility, the size of the overall trace buffer can be configured via a
parameter when installing the PT module. Considering the tracing
buffer could get fully occupied, we implement the PT module to
handle that situation by clearing the END bit and setting the INT
bit in the last ToPA entry. By doing this, Intel PT could trigger a
performance-monitoring interrupt when the tracing buffer is fully
occupied. Since this interrupt may have a skid and result in a loss of
PT packets, we further append an entry to the end of ToPA which
also points to a 4MB physical memory area.
Fork Server.We compiled the fork server into the GNU ld linker
and used it through a series of configurations. During the target
program initialization, our linker gets started and completes its
works on linking and loading. It then enters the forking loop as we
described in Section 2.

5 EVALUATION
In this section, we present the evaluation of PTrix in terms of
fuzzing efficiency and vulnerability discovery.

For efficiency, we performed two sets of experiments. First, we
compare PTrix with QEMU-AFL, Edge-PT, and PTFuzzer [38] on
execution speed. QEMU-AFL refers to AFL running in the QEMUmode
and Edge-PT is a ported version of kAFL [29] that supports user
space application. This set of experiments aims to illustrate the
efficiency improvement of PTrix on executing the same amount
of inputs. Second, following the best practise [20], we evaluated
PTrix on efficiency of code coverage, which is a widely accepted
utility metric of fuzzers [23, 24]. Recall that PTrix uses feedback
that has higher path-sensitivity than QEMU-AFL. To show that our
new feedback indeed allows PTrix to discover new code space,
we also conducted a study to compare the code space explored by
PTrix and QEMU-AFL.

To evaluate its vulnerability discovery ability, we applied PTrix
on a set of commonly used and exhaustively fuzzed programs. As
we will present shortly, PTrix discovers 35 new vulnerabilities.
Among them, at least 10 were discovered due to our new feedback.

5.1 Experiment Settings
To support our evaluation, we selected a set of 9 programs. Details
about these programs and the corresponding fuzzing settings are
presented in Table 1. All these programs are either commonly used
for fuzzing evaluation [11, 27] or treated as core software by the
Fuzzing Project [12]. In addition, they represent a high level of

diversity in functionality and complexity. Considering that different
seed inputs and execution options could lead to varying fuzzing
results [18], we used the seeds suggested by AFL and configured
the options following the existing works.

For consistency, we conducted all the experiments on machines
equipped with Intel Core i5-7260U and 8 GB RAM running 64-bit
Ubuntu 14.04-LTS. To minimize the effect of randomness intro-
duced during software fuzzing, we ran each fuzzing test 5 times
and reported the average results with standard deviation.

5.2 Execution Speed Evaluation

Figure 7: Normalized dry-run duration for different fuzzing
techniques. Shorter is better.

To show how fast is PTrix, we compared its execution speed
with QEMU-AFL, Edge-PT, and PTFuzzer. To be specific, we ran
these fuzzers with an identical input corpus and examined their
execution time. In this evaluation, different inputs could trigger
different types of fuzzing operations/decisions. For example, an
input that results in no new coverage will be discarded without
further processing. To avoid such difference in fuzzing runs, we
selected inputs which make all the fuzzers to go through the entire
fuzzing procedure. For this, we ran QEMU-AFL with the settings
shown in Table 1 for 24 hours and only kept inputs that led to new
coverage. Note that these inputs also resulted in new coverage in
PTrix due to its highly sensitive feedback.

In this test, we utilized the dry-run mode of AFL. It allows the
fuzzers to repeatedly process the above input corpus. In Figure 7,
we show the evaluation results that have been normalized with
PTrix as baseline. On average, PTrix ran 4.3x, 25.8x, and 54.9x
faster than QEMU-AFL, Edge-PT, and PTFuzzer 3, respectively. In ad-
dition, we observed that Edge-PT ran 6.0x slower than QEMU-AFL
with all our optimization enabled (i. e., parallel decoding, optimized
communication and caching instruction trace), and PTFuzzer ran
13.5x slower than QEMU-AFL. Considering that Edge-PT, PTFuzzer
and AFL-QEMU share the identical feedback, this observation indi-
cates that the design with control flow reconstruction cannot truly
expose the potential of PT in improving fuzzing efficiency.

PTrix optimization breakdown:To better understand how PTrix
achieves the high execution speed, we inspected the improvement
that each of our optimization introduces. We first re-ran PTrix
without our new feedback scheme, parallel trace decoding and
3Our evaluation on PTFuzzer shows much worse performance than the results re-
ported in [38]. We believe this is mainly because our benchmarks have higher com-
plexities and the seeds we use trigger deeper execution.

PTrix: Efficient Hardware-Assisted Fuzzing for COTS Binary ASIACCS ’19, July 07–12, 2019, Auckland, NZ

Program Optimization
Name New Feedback

Scheme
Parallel
Parsing

Bitmap
Optimization

libpng 1038.16% 22.19% 9.51%
libjpeg 1412.96% 36.54% 14.04%
libxml 2856.08% 51.02% 5.80%
c++filt 1208.11% 28.70% 10.58%
nm 1145.90% 18.22% 6.61%
objdump 393.58% 6.63% 4.40%
exif+libexif 2695.03% 41.64% 8.60%
perl 845.71% 63.14% 9.37%
mupdf 1426.82% 47.61% 3.68%
Average 1446.93% 35.08% 8.07%

Table 2: PTrix system optimization breakdown

bitmap optimization. Then we enabled the optimization one by
one and measured the increase of execution speed independently.
The results are shown in Table 2. On average, our new coverage
scheme increases the execution speed by over 14X. The major rea-
son, we believe, is that the new scheme avoids the time-consuming
instruction reconstruction. In addition, the parallel parsing intro-
duces 35% increase in execution speed and our bitmap optimization
contributes around 8% to the speedup.

5.3 Code Coverage Measurements
As above shown, the design of PTrix substantially accelerates the
fuzzing process. Next, we show that PTrix is not just faster but
also covers more code. In fact, code coverage is the most widely
acknowledged metric [11, 23, 24, 27, 34, 35] for evaluating fuzzers.

We run PTrix and AFL for 72 hours or until QEMU-AFL saturates4,
whichever comes first. This long-term evaluation reduces potential
random noise in results and gives a more comprehensive view of
the coverage efficiency across time. Note that in this evaluation, we
excluded Edge-pt and PTFuzzer. The reason is that Edge-pt and
PTFuzzer explore code even slower than QEMU-AFL, as echoed by
our observations on the above 24 hour tests.

In the following, we first present the efficiency comparison be-
tween PTrix and QEMU-AFL. Then we examine the difference be-
tween code covered by the two fuzzers and discuss the possible
reasons.

Code exploration efficiency: We calculated the code coverage
using a representative quantification — number of edges between
basic blocks [23] and summarize the results in Figure 8.

As is shown in the Figure, PTrix generally explored code space
quicker than QEMU-AFL across the timeline. Only in the case of
c++filt, PTrix fell behind QEMU-AFL from the 24th hour to the
48th hours. We believe this was mainly because PTrix spent more
time on a local code region, which is reflected by its increased pace
after 48 hours. For all the 9 programs, PTrix covered more edges
than QEMU-AFL at the end. In particular for objdump and libpng,
PTrix significantly increased the code coverage for over 5%. In the
cases of c++filt, nm and mupdf, PTrix covered a similar amount
of edges as QEMU-AFL after 72 hours. A possible reason for PTrix
not achieving an obvious increase is that the fuzzers were reaching
the first code coverage plateau, as their new edge discovering rate
drops almost to 0.

4When QEMU-AFL finishes all inputs that lead to new coverage, we consider it has
saturated. The rationale is after that, QEMU-AFL may only discover new coverage
through random attempts instead of strategic exploration.

Program Code coverage
Name overlap PTRIX only QEMU-AFL only
libpng 95.60% 2.80% 1.60%
libjpeg 89.50% 10.00% 0.50%
c++filt 89.93% 5.85% 4.22%
mupdf 96.51% 2.12% 1.37%
Average 92.89% 5.19% 1.92%

Table 3: Edge coverage comparison.

PTrix uses a feedback scheme with higher sensitivity, which
tends to explore localized code more thoroughly. By theory, this
will make PTrix move slowly around code regions. However, our
evaluation shows an opposite conclusion. We believe this is largely
attributable to the high execution speed of PTrix. This fast exe-
cution not only offsets the delay by localizing into code regions
but also accelerates the travel between different regions. Also note
that the comprehensive exploration by PTrix is not running in
vain. It gains new opportunities to reach new code regions and
vulnerabilities. We will shortly discuss this with evaluation results.

Code exploration effectiveness: PTrix and QEMU-AFL use differ-
ent feedback schemes. Intuition suggests that the two fuzzers may
explore code in different favors. To explore this intuition, we com-
pared the difference of edges discovered by PTrix and QEMU-AFL.
Essentially, we took the union of edges from the two fuzzers as the
baseline. Then we calculated the proportion that was covered by
both PTrix and QEMU-AFL, by PTrix only, and by QEMU-AFL only.
The average results are organized in Table 3. We only included the
cases where QEMU-AFL has saturated. In those cases, QEMU-AFL has
sufficiently expressed its exploration capability following the strate-
gic approach, which enables us to better inspect whether PTrix
can really outperform QEMU-AFL.

As shown in the table, the two fuzzers were mostly covering
the same set of edges, but they indeed explored different code re-
gions. For instance, in the case of cxxfilt, over 10% of code edges
were individually discovered. Taking a closer look, PTrix missed
significantly fewer edges than QEMU-AFL. Particularly in the case
of libpng, PTrix nearly covered all the edges by QEMU-AFL. This
indicates the path-sensitive feedback improves the code exploration
of PTrix. More importantly, during the long-term running, PTrix
never saturated. For example, when we ended the tests on c++filt,
PTrix’s pending favorite metric was still about 1,000. This demon-
strated the potential of PTrix to cover all edges that have been
explored by QEMU-AFL.

We have also manually inspected the different edges covered by
PTrix and QEMU-AFL. Due to limited time, we have only analyzed
a subset of them. We have identified two code regions which we
believe shall only be covered by PTrix. We have explained one
case from libpng in Section 3 and will present the other case from
objdump in Section 5.4.

Code exploration comprehensiveness: As shown above, PTrix
and QEMU-AFL may cover different code given the same amount of
time. Presumably, this is due to their different feedback schemes.
To verify this intuition, we performed an additional analysis named
call chain analysis. This analysis takes as inputs the corpus from
PTrix and QEMU-AFL in the long-term run. It re-executed each test
case and collected the call chains. A call chain is defined as follows
— When the execution reaches a leaf node on the program’s call

ASIACCS ’19, July 07–12, 2019, Auckland, NZ Chen, et al.

8 16 24 32 40 48 56 64 72
Fuzzing Hours

5400

5500

5600

5700

5800

5900

6000

Co
ve

re
d

Ed
ge

s

ptrix (363394 seeds)
qemu (22829 seeds)

(a) c++filt*

8 16 24 32 40 48 56 64 72
Fuzzing Hours

1750

1800

1850

1900

1950

Co
ve

re
d

Ed
ge

s

ptrix (10342 seeds)
qemu (1038 seeds)

(b) exif

8 16 24 32 40 48 56 64 72
Fuzzing Hours

20000

22000

24000

26000

28000

30000

32000

Co
ve

re
d

Ed
ge

s

ptrix (93471 seeds)
qemu (8783 seeds)

(c) perl

8 16 24 32 40 48 56 64 72
Fuzzing Hours

1750

2000

2250

2500

2750

3000

3250

3500

Co
ve

re
d

Ed
ge

s

ptrix (109824 seeds)
qemu (5829 seeds)

(d) libjpeg*

8 16 24 32 40 48 56 64 72
Fuzzing Hours

1650

1700

1750

1800

1850

1900

1950

Co
ve

re
d

Ed
ge

s

ptrix (5876 seeds)
qemu (1668 seeds)

(e) libpng*

8 16 24 32 40 48 56 64 72
Fuzzing Hours

4500

4600

4700

4800

Co
ve

re
d

Ed
ge

s

ptrix (125661 seeds)
qemu (8520 seeds)

(f) libxml

8 16 24 32 40 48 56 64 72
Fuzzing Hours

2750

2800

2850

2900

2950

3000

3050

3100

Co
ve

re
d

Ed
ge

s

ptrix (25629 seeds)
qemu (3866 seeds)

(g) mupdf*

8 16 24 32 40 48 56 64 72
Fuzzing Hours

1500

1750

2000

2250

2500

2750

3000

3250

Co
ve

re
d

Ed
ge

s

ptrix (159784 seeds)
qemu (2905 seeds)

(h) nm

8 16 24 32 40 48 56 64 72
Fuzzing Hours

4000

4200

4400

4600

4800

5000

5200

5400

Co
ve

re
d

Ed
ge

s

ptrix (104076 seeds)
qemu (7307 seeds)

(i) objdump

Figure 8: Edge coverage results of different fuzzing techniques for 72 hours. The star (*) besides a program name indicates that
fuzzing on that program has saturated.

graph, the sequence of functions on the stack is deemed as a call
chain. The length of a call chain represents a “locally maximal”
execution depth.

To give an overview of the call chains, we aggregated them by
their lengths and present the cumulative distribution in Figure 9.
Generally speaking, PTrix produced higher proportion of shorter
call chains than QEMU-AFL. We also observed that PTrix usually
generates the shorter call chains before the longer ones. This shows
that PTrix spends more efforts in the beginning on shorter call
chains and then later moves onto longer ones, which is consistent
with our expectation — PTrix explores local code more compre-
hensively and does not easily skip code paths or regions.

5.4 Discovery of Real-world Vulnerabilities
Going beyond evaluation on fuzzing efficiency and code coverage,
we further applied PTrix to hunt unknown bugs in the wild. We
selected a set of programs as shown in Table 1 and four other well-
tested programs including gnu-ld, curl, nasm, and tcpdump. Due
to constraints of computation resources and time, we only ran each
program for 24 hours.

Program Vulnerability Type CVE
Name Memory Error DOS
objdump 4 1 0
c++filt 3 2 2
perl 3 0 1
nm 4 1 0
gifview 1 0 1
gdk-pixbuf 1 0 1
nasm 7 2 5
glibc ld 1 0 0
libxml 0 2 1
tcpdump 1 0 0
unrtf 1 0 0
libjpeg 0 1 0
Total 25 10 11

Table 4: Vulnerabilities discovered by PTrix

PTrix triggered 19,000 unique exceptions — unique crashes
and hangs based on the measurement of AFL. We have manually
analyzed a subset of them and confirmed 35 new vulnerabilities.
Among those vulnerabilities, 25 are memory corruptions vulner-
abilities and 10 are Denial-of-Service (DoS) flaws that could lead
to endless computation or resource exhaustion. 11 CVE numbers

PTrix: Efficient Hardware-Assisted Fuzzing for COTS Binary ASIACCS ’19, July 07–12, 2019, Auckland, NZ

have been created for those vulnerabilities. We have been commu-
nicating with the developers for patches. When those patches are
available, we will disclose the details of those vulnerabilities.

Taking a closer look at the results, we observe that the discovery
of certain vulnerabilities was indeed benefited from our new feed-
back. Among the 10 DoS vulnerabilities, 9 are due to recursive calls
or deep loops, which follow the same pattern as the example shown
in Figure 6. As we have explained in Section 3, QEMU-AFL unlikely
would catch them. For the memory corruption vulnerabilities, al-
though most of them locate in execution space that QEMU-AFL will
also cover with high likelihood, we have identified a case that can
only be discovered using our new feedback. In the following, we
the above memory corruption case and a DoS vulnerability (all the
other DoS vulnerabilities share the same pattern).

Stack Overflow/Exhaustion in c++filt. c++filt shipped in
binutils-2.29 can run into stack exhaustion with a long sequence
of “F”. More specifically, each “F” leads to a recursive call chain in-
cluding demangle_nested_args, demangle_args, do_arg and
do_type. Stack frames of those recursive functions gradually oc-
cupy the whole stack.

IntegerOverflow in objdump. In objdump from binutils-2.29,
an integer could overflow, which further causes memory corruption.
To be specific, objdump utilizes qsort for sorting an array and uses
the return value of bfd_canonicalize_dynamic_reloc to specify
the array size. When exception happens, bfd_canonicalize_dyn-
amic_reloc may return -1. However, this is ignored by objdump
and consequently, qsort wrongly casts -1 to the largest unsigned
value (which is taken as the array size) and ultimately makes out-of-
bound memory accesses. The bfd_canonicalize_dynamic_reloc
function implements a logic close to Figure 5a. Because of a similar
reason as we explained in Section 3, QEMU-AFL is unable to make
bfd_canonicalize_dynamic_reloc return -1.

6 DISCUSSION
In this section, we discuss the limitations of our current design,
insights we learned and possible future directions.

Path explosion: PTrix implements a gray-box fuzzing scheme
with path-sensitive feedback. This feedback metric, however, may
lead to the problem of path explosion. That is, the fuzzer may
explore a huge number of paths and correspondingly produce an
extremely large corpus. This could further result in the exhaustion
of available bitmap entries used by the fuzzer to record coverage. As
we detailed in Section 3, PTrixmitigates the path explosion problem
by incorporating the technique of descending path sensitivity. This
technique favors the prefix of an execution path and suppresses
long paths, which prevents PTrix from generating a large corpus
and trapping into localized code regions.

Generality: PTrix leverages PT to trace the target program. How-
ever, PT is only equipped on x86 platforms. We believe this will
not impede the generality of the design philosophy behind PTrix.
Probably due to the motivation to assist debugging, hardware trac-
ing has become a common feature in major architectures. Besides
x86, ARM also incorporates a hardware feature called Embedded
Trace Macrocell (ETM) to support runtime tracing. ETM, similar to
PT, can trace the instructions with negligible performance impacts.

In addition, ETM also provides a rich set of configuration options
which can serve the requirement of PTrix. We, therefore, believe
PTrix can be ported to other platforms without any modifications
to the design.

7 RELATEDWORKS
This work focuses on leveraging PT to escalate efficiency of grey-
box fuzzing on COST binaries. With regard to this problem, the
closely related research includes binary compatible coverage-based
fuzzing, improvement of coverage-based fuzzing, and combination
of fuzzing and other techniques.

7.1 Binary Compatible Coverage-based Fuzzing
Coverage-based fuzzing requires feedback from the target program,
which can be obtained via lightweight program instrumentation
when source code is available. This is, however, very challenging
when only a binary is present. In the literature, various options
have been explored.

7.1.1 Fuzzing with Dynamic Instrumentation. Dynamic instrumen-
tation based solutions [3, 6, 7, 24] dynamically translate the binary
code, the fuzzer can then intercept and collect coverage informa-
tion. This approach, however, significantly slows down the fuzzing
process. The fastest tool produced by this research line (QEMU-AFL)
reportedly introduces 2 to 5 times of overhead.

7.1.2 Hardware-assisted Fuzzing. Motivated by the inefficiency of
dynamic instrumentation based fuzzing systems, hardware-assisted
fuzzing techniques were proposed recently [38]. Similar to PTrix,
by leveraging the newly available hardware tracing component–
Intel PT [1], Honggfuzz [5] and kAFL [29] efficiently collect the
execution trace from the target program. In contrast to PTrix, the
two systems do not fully exploit the potential of PT. Honggfuzz
only collects coarse-grained coverage information trading for ex-
ecution throughput, which in fact degrades the code exploring
capability. kAFL and PTFuzz, however, spend too much bandwidth
on reconstructing the execution flow from PT trace.

7.2 Improvement of Coverage-based Fuzzing
7.2.1 Improving Seed Generation. Many programs take as inputs
highly structured files and process these inputs over different stages [10,
14, 25, 28, 33]. As a result, most randomly generated inputs will be
rejected at the early stages and cannot reach the core logic of the tar-
get program. Therefore, based on a priori knowledge about inputs
taken by the fuzzed programs, more targeted seeds can be gen-
erated. Skyfire [35] establishes a probabilistic context-sensitive
grammar model by learning through a large corpus of valid inputs.
It then uses the grammar to generate inputs that are accepted by
target programs. Similarly, Godefroid et al. aid white-box fuzzing
with a grammar-based input generator [17, 26].

7.2.2 Improving Fuzzing Scheduling. When there are plenty of
seeds in the input queue, the strategy to select seeds for the fol-
lowing runs is very critical for the efficiency of fuzzing test [36].
AFL [22] develops a scheduling algorithm in a round-robin flavor
which prefers seeds that bring new edge coverage and take less time

ASIACCS ’19, July 07–12, 2019, Auckland, NZ Chen, et al.

to run. Böhme et al. [11] propose to change that algorithm to prior-
itize inputs that follow less frequently visited paths. This strategy
significantly accelerates the code coverage and bug discovery.

7.2.3 Improving Coverage Guidance. Providing a more informative
coverage guidance is a new trend on tuning the effectiveness of
fuzz-testing techniques. CollAFL [15] reduced path collision intro-
duced by AFL’s over-approximated counted edge coverage feedback,
and thus make the fuzzer more sensitive to new program paths.
Along the same route, recent works [13, 31] introduced context-
aware branch coverage to decide on whether to follow inputs cover
branches with new context. Both techniques showed that a path-
based feedback is a promising direction to help boost fuzzer’s ef-
fectiveness. PTrix aims to provide a higher level of path guidance,
which helps PTrix achieve high fuzzing throughput.

8 CONCLUSION
We present PTrix, a binary compatible fuzz-testing tool featuring
efficient code exploration capability. PTrix is carefully designed and
engineered to take full advantage of Intel Processor Trace as its un-
derpinning tracing component. Using PTrix, we demonstrate newly
available hardware feature can significantly accelerate binary-only
fuzzing through two elaborate designs, including a parallel scheme
of trace parsing and a newly designed PT-friendly feedback. Also
because of the new feedback provides more guidance than code
coverage, PTrix is able to identify 35 new software bugs in well-
tested programs that have not yet been uncovered, among them 11
CVEs have been assigned thus far.

9 ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their constructive comments. This project was supported by the
National Science Foundation (Grant#: CNS-1718459, Grant#: CNS-
1748334, Grant#: CNS-1718459) and the Army Research Office
(Grant#: W911NF-17-1-0039). Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES
[1] 2013. Intel Processor Trace. https://software.intel.com/en-us/blogs/2013/09/18/

processor-tracing.
[2] 2013. Sample images for testing Exif metadata retrieval. https://github.com/

ianare/exif-samples.
[3] 2014. AFL technical details. http://lcamtuf.coredump.cx/afl/technical_details.txt.
[4] 2014. Fuzzing random programs without execve(). https://lcamtuf.blogspot.com/

2014/10/fuzzing-binaries-without-execve.html.
[5] 2015. Honggfuzz. http://honggfuzz.com.
[6] 2016. AFL-dyninst. https://github.com/vrtadmin/moow/tree/master/afl-dyninst.
[7] 2016. Project Triforce: Run AFL on Everything! https://www.

nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/
project-triforce-run-afl-on-everything/.

[8] 2017. Harnessing Intel Processor Trace on Windows for fuzzing and dynamic
analysis. https://recon.cx/2017/brussels/talks/intel_processor_trace.html.

[9] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference (USENIX
ATC). USENIX Association.

[10] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security (CCS). ACM.

[11] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM.

[12] Hanno BÃűck. 2014. The Fuzzing Project - apps. https://fuzzing-project.org/
software.html.

[13] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
arXiv preprint arXiv:1803.01307 (2018).

[14] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing. In
To appear in the 2020 IEEE Symposium on Security and Privacy (SP). IEEE.

[15] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. 2018. CollAFL: Path
Sensitive Fuzzing. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE.

[16] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control
flows using intel processor trace. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM.

[17] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based
Whitebox Fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). ACM.

[18] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Queue 10, 1, Article 20 (Jan. 2012), 8 pages.

[19] Christian Henke, Carsten Schmoll, and Tanja Zseby. 2008. Empirical Evaluation
of Hash Functions for Multipoint Measurements. SIGCOMM Comput. Commun.
Rev. 38, 3 (July 2008), 39–50.

[20] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM.

[21] Geeknik Labs. 2016. Fuzzing Perl: A Tale of Two American Fuzzy Lops. http:
//www.geeknik.net/71nvhf1fp.

[22] lcamtuf. 2005. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[23] Caroline Lemieux and Koushik Sen. 2017. FairFuzz: Targeting Rare Branches to

Rapidly Increase Greybox Fuzz Testing Coverage. CoRR abs/1709.07101 (2017).
[24] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (FSE). ACM.

[25] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE.

[26] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based
Whitebox Fuzzing for Program Binaries. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE). ACM.

[27] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. Vuzzer: Application-aware evolutionary fuzzing. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[28] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the 23rd USENIX Conference on Security Symposium
(USENIX Security). USENIX Association.

[29] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In Proceedings of the 26rd USENIX Conference on Security Symposium (USENIX
Security). USENIX Association.

[30] Margo I Seltzer and Ozan Yigit. 1991. A New Hashing Package for UNIX.. In
USENIX Winter. USENIX.

[31] Hyunmin Seo and Sunghun Kim. 2014. How we get there: A context-guided
search strategy in concolic testing. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). ACM.

[32] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy (SP). IEEE.

[33] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[34] László Szekeres. 2017. Memory corruption mitigation via hardening and testing.
Ph.D. Dissertation. Stony Brook University.

[35] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven seed
generation for fuzzing. In Proceedings of the 2017 IEEE Symposium on Security
and Privacy (SP). IEEE.

[36] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling black-box mutational fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer and Communications Security (CCS). ACM.

[37] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
New Operating Primitives to Improve Fuzzing Performance. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM.

[38] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and Erxue Min. 2018. PTfuzz:
Guided Fuzzing with Processor Trace Feedback. IEEE Access (2018).

https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://github.com/ianare/exif-samples
https://github.com/ianare/exif-samples
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
http://honggfuzz.com
https://github.com/vrtadmin/moow/tree/master/afl-dyninst
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://recon.cx/2017/brussels/talks/intel_processor_trace.html
https://fuzzing-project.org/software.html
https://fuzzing-project.org/software.html
http://www.geeknik.net/71nvhf1fp
http://www.geeknik.net/71nvhf1fp
http://lcamtuf.coredump.cx/afl/

PTrix: Efficient Hardware-Assisted Fuzzing for COTS Binary ASIACCS ’19, July 07–12, 2019, Auckland, NZ

A SUPPLEMENTARY FIGURES AND
EVALUATION DATA

0

100

1 3 5 7 9 11 13 15
length

cxxfilt

0
50

100

3 5 7 9 11 13 15
length

png

0
50

100

2 3 4 5 6 7 8 9 10 11
length

jpeg

0

100

2 6 10 14 18 22 26 30
length

exif

0
50

100

0 10 20 30 40 50 60 70
length

xml-lint

0
50

100

1 3 5 7 9 1113151719
length

perl

0
50

100

2 4
length

nm

0

50

100

2 4 6 8 10 12 14 16 18 20
length

objdump

0

50

100

3 7 111519232731353943

length

mupdf

Figure 9: CDF of Call chains triggered by different fuzzing
techniques. PTrix (Solidline), QEMU-AFL (Dashline)

	Abstract
	1 Introduction
	2 Background
	2.1 American Fuzzy Lop
	2.2 Intel Processor Tracing

	3 Design
	3.1 Overview
	3.2 Workflow Detail
	3.3 Efficiency Improvement
	3.4 Side Benefits of New Feedback Scheme

	4 Implementation
	5 Evaluation
	5.1 Experiment Settings
	5.2 Execution Speed Evaluation
	5.3 Code Coverage Measurements
	5.4 Discovery of Real-world Vulnerabilities

	6 Discussion
	7 Related Works
	7.1 Binary Compatible Coverage-based Fuzzing
	7.2 Improvement of Coverage-based Fuzzing

	8 Conclusion
	9 ACKNOWLEDGMENTS
	References
	Appendix A Supplementary Figures and Evaluation Data

